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We develop a queueing-theoretic framework to model the temporal evolution of cyber-attack surfaces, where
the number of active vulnerabilities is represented as the backlog of a queue. Vulnerabilities arrive as they are
discovered or created, and leave the system when they are patched or successfully exploited. Building on this
model, we study how automation affects attack and defense dynamics by introducing an AI amplification
factor that scales arrival, exploit, and patching rates. Our analysis shows that even symmetric automation
can increase the rate of successful exploits. We validate the model using vulnerability data collected from
an open source software supply chain, and show that it closely matches real-world attack-surface dynamics.
Empirical results reveal heavy-tailed patching times, which we prove that they induce long-range dependence
in vulnerability backlog and help explain persistent cyber risk. Utilizing our queueing abstraction for the
attack surface, next we build a systematic approach for cyber risk mitigation. Toward that end, we formulate
the dynamic defense problem as a constrained Markov decision process with resource-budget switching-
cost constraints, and develop a reinforcement-learning (RL) algorithm that achieves provably near-optimal
regret. Numerical experiments validate the approach and demonstrate that our adaptive RL-based defense
policies significantly reduce successful exploits and mitigate heavy-tail queue events. Using trace-driven
experiments on the ARVO dataset, we show that the proposed RL-based defense policy reduces the average
number of active vulnerabilities in a software supply chain by over 90% compared to existing defense practices,
without increasing the overall maintenance budget. Our results allows defenders to fundamentally quantify
the cumulative exposure risk under long-range dependent attack dynamics and to design adaptive defense
strategies with provable efficiency.
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1 Introduction

Cyber risk exhibits temporal dependence and cannot be adequately described by static or stationary
reliability models. Much of the existing approaches in cybersecurity focus on isolated attack models
or mitigation mechanisms, offering limited understanding of the holistic and time-varying nature
of vulnerabilities that define an organization’s attack surface. Modern infrastructures, spanning
cloud services, software-defined networks, and distributed APIs, further amplify these dynamics,
producing attack surfaces whose scale and evolution are often unknown even to their operators.

To address this gap, we develop a dynamic stochastic model for the evolution of the attack
surface. The model generalizes from an individual software component to an entire organization,
and ultimately to large-scale ecosystems such as industry sectors or nation-state infrastructures.
We formalize the instantaneous size of the attack surface as the number of active vulnerabilities,
represented by the queue length of a stochastic service process. Arrivals to the queue correspond
to the discovery or creation of new vulnerabilities, while departures represent either (a) successful
exploitation or (b) successful patching. This queueing abstraction makes explicit the role of limited
defense capacity, allowing attack-surface management to be studied as a resource-allocation and
backlog-control problem.

Building on this foundation, we extend the model to capture the growing influence of automation
and Al in both offensive and defensive operations. We introduce an AI amplification factor that
scales vulnerability arrival, exploit, and patching rates. This abstraction is not intended to model Al
systems in detail, but to examine how this factor reshapes backlog dynamics. Our analysis shows
that even when attack and defense capabilities scale symmetrically, the rate of successful exploits
can still increase superlinearly.

To demonstrate how accurately our proposed framework captures real-world vulnerability
dynamics, we apply it to the problem of strengthening open-source software supply chains. Using the
ARVO (Atlas of Reproducible Vulnerabilities for Open Source Software) dataset [19], which contains
over 4,000 reproducible vulnerabilities from Google’s OSS-Fuzz platform, we characterize the real-
world dynamics of vulnerability discovery and patching across thousands of open-source projects.
Event-level analysis reveals that vulnerability arrivals and lifetimes are bursty, heavy-tailed, and
non-stationary, and that segmented queueing models accurately reproduce the temporal evolution
of the attack surface size across development cycles. This temporal structure further exhibits
long-range dependence (LRD), indicating that correlations in exposure decay polynomially rather
than exponentially. In practical terms, the effects of individual vulnerabilities persist far beyond
their initial disclosure, highlighting systemic bottlenecks in patch deployment and motivating
the need for continuous, adaptive, and resource-aware defense strategies to ensure supply-chain
resilience.

Motivated by persistent patching delays and the imbalance between vulnerability arrivals and
limited defense capacity observed in both data and Al-driven analysis, we develop a reinforcement
learning (RL) approach for adaptive defense under resource-budget constraints. The defense re-
source, represented by the patching rate, directly influences the service process in our queueing
model. Our dynamic framework allows defense rates to vary over time, while explicitly incorpo-
rating such switching costs into performance evaluation. Although the resulting control problem
is analytically intractable in closed form, we design a low-complexity RL algorithm for adaptive
defense allocation under uncertainty. In addition, we rigorously establish a near-optimal regret
bound relative to an oracle defender and introduce new switching-reduction techniques that extend
the theory of constrained Markov decision processes (CMDPs).

Finally, to illustrate the practical implications of our theoretical and empirical findings, we
conduct numerical experiments to evaluate the proposed RL-based defense policy. The results
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show that adaptive resource allocation guided by our RL algorithm can substantially mitigate
exploit success rates, achieving reductions of up to 55% compared to static defense strategies,
while maintaining stable performance under both stochastic and adversarial vulnerability arrivals.
In trace-driven experiments using the ARVO dataset, our adaptive defense policy reduces the
average number of active vulnerabilities in a software supply chain by more than 90% compared
to existing defense practices, while operating under the same overall maintenance budget. These
findings underscore that dynamic, learning-based defense policies not only outperform static
benchmarks, but also yield smoother and more predictable system behavior. This demonstrates
how our analytical framework can directly supports real-world cyber-defense decision making.

Contributions. This work establishes a foundational framework for analyzing and controlling the
dynamics of organizational attack surfaces through a stochastic and queueing-theoretic lens. The
key contributions are as follows:

e Dynamic Queueing Model of the Attack Surface. We develop a queueing-theoretic
model that jointly captures the temporal and spatial evolution of active vulnerabilities,
providing a unified representation of vulnerability discovery, exploitation, and patching
across organizational or ecosystem scales.

e AI-Amplified Threat Dynamics. We extend the model with an Al-amplification factor that
quantifies how automation accelerates vulnerability creation and exploitation. Analytical
results show that the breach rate can grow superlinearly with automation, even when Al is
deployed defensively.

¢ Empirical Validation and LRD of Vulnerability Dynamics. Using the ARVO dataset,
we empirically validate the proposed queueing-theoretic framework on a real-world open-
source repository. By fitting segmented queueing models to vulnerability discovery and
patching events, we show that the model accurately captures the non-stationary and heavy-
tailed evolution of the attack surface. We further prove that such heavy-tailed service
distributions lead to LRD in attack surface size, explaining the persistent exposure patterns
observed in practice and highlighting the structural limits of static defense strategies.

e Near-Optimal Adaptive Defense via RL. We formulate adaptive patching as a CMDP with
resource-budget and switching-cost constraints, and develop a near-optimal RL algorithm
for adaptive defense. The algorithm achieves a sublinear regret relative to an oracle defender
and produces smoother, more stable defense actions under varying attack intensities.

e Theoretical Advances in Learning-Based Defense. Our analysis introduces switching-
reduction techniques and, to our knowledge, provides the first sublinear regret guarantees
for RL under the joint coexistence of resource-budget and switching-cost constraints. These
results advance the theoretical foundation of learning-based cyber defense.

e Defense Switching Cost. To our knowledge, this work is the first to model and analyze the
amount of defense change as a measurable switching cost in RL. Specifically, the switching
cost in Eq. (6) quantifies the magnitude of consecutive policy adjustments, in contrast to
previous approaches [2, 10, 26] that penalize only the frequency of policy changes.

Together, these contributions establish a quantitative and theoretically grounded foundation for
modeling, analyzing, and dynamically defending evolving attack surfaces.

2 Related Work

Our work is related to probabilistic approaches to cyber risk analysis. The industry standard,
Factor Analysis of Information Risk (FAIR) framework [12] formalizes cyber risk quantification
through probabilistic factors such as threat events, vulnerabilities, and loss magnitude, providing a
common language for risk assessment. Broader treatments of probabilistic cyber insurance and
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risk evaluation can be found in [16]. While these approaches are influential, they largely assume
static system conditions and do not capture the evolving temporal dependencies characteristic of
modern attack surfaces.

The concept of the attack surface was formalized by Manadhata and Wing [18], and a systematic
review [29] revealed fragmented definitions across hundreds of studies. Recent large-scale analyses,
such as [9], quantified attack surfaces across government infrastructures, highlighting their scale
and complexity. These works provide valuable measurement perspectives, but they typically treat
the attack surface as a static quantity and do not model how it evolves over time or responds to
defense actions.

A related line of work models interdependent vulnerabilities through probabilistic attack graphs [30]
and their Al-based extensions [11]. Bayesian-network models [13, 23, 24] have been proposed to
estimate compromise probabilities, but these frameworks describe the system at a single snapshot
in time. We refer to such methods as snapshot models of risk, as they capture system state at a fixed
point in time and do not represent the sequential or long-range evoluation of vulnerabilities.

Efforts to incorporate temporal evolution have used Bayesian networks for industrial and cloud
systems [25, 32] and Markovian models for sequential attacks [14, 17]. These studies focus on
specific environments rather than the evolution of the attack surface as a whole. Haldar and
Mishra [8] and Feutrill et al. [5] observed that vulnerability disclosures exhibit burstiness and
long-range dependence, suggesting queueing systems as a natural abstraction. However, existing
studies do not combine such models with large-scale empirical validation or address the joint
temporal and spatial dynamics of vulnerabilitiy backlogs.

A key enabler for such modeling is the availability of event-level vulnerability data. The recently
released ARVO dataset [19] provides detailed timestamps of vulnerability discovery and patching.
Our work is the first to leverage ARVO to calibrate and validate a queueing-theoretic model of
attack surface evolution, bridging theoretical abstractions with empirical vulnerability dynamics.

The rapid integration of Al into both software development and exploitation further complicates
this landscape. While large language models (LLMs) can assist in code repair [3, 28], they also
accelerate exploit generation [4, 7, 31]. Reports by practitioners and agencies [20, 22] highlight this
dual role of Al as both attacker and defender. Yet existing models do not provide a quantitative
framework for studying how automation simultaneously affects vulnerability discovery, exploita-
tion, and patching dynamics. Our use of an Al amplification factor is intended to capture these
rate-level effects in a tractable way.

Finally, constrained and safe RL has been studied under budget [1, 21, 27] and policy-adaptation
[2, 10, 26] constraints. Existing studies on policy-adaptation primarily penalize the number of
policy changes, i.e., the frequency of updates. Without the magnitude of change, it is not completely
possibly to quantify the operational cost of change actions in practical defense settings. In contrast,
our formulation models the amount of change in the executed defense action and quantifies the
magnitude of consecutive policy adjustments. This distinction allows us to model reconfiguration
overhead in a more realistic way. Moreover, previous work does not consider the joint effect of
resource-budget and switching-cost constraints on adaptive defense policies. Our formulation
unifies these elements and provides the first theoretical regret guarantees for RL in this setting.

Overall, our study introduces a queueing-theoretic perspective that explicitly models the time-
varying and heavy-tailed nature of vulnerability backlogs. By validating the model on real data
and integrating it with adaptive control, we provide a quantitative framework for analyzing
dynamic attack surfaces and defense resource allocation. Using the framework, we provide an RL-
based systematic approach to allocating constrained defensive resources to achieve a significantly
improved attack surface dynamics, with the variations in the budget directly taken into account.
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Fig. 1. Attack surface modeled as a queueing system. Vulnerabilities arrive via V(t) and depart through
competing defense (patching) and exploit processes.

3 System Model

Consider a single component in an organization’s IT stack, such as an authentication service, file
server, or endpoint device. Each component maintains an attack surface, which represents the set
of currently active vulnerabilities. For example, in a software release, the attack surface can
be defined as the set of unpatched bugs (the definition can also be extended depending on the
dependencies to the other systems). In a larger ecosystem, like an enterprise, the IT/OT environment
will have a complex attack surface, composed of the combination of the attack surfaces of each
component in the system. The overall attack surface will exhibit an interplay across the network of
components, and its size naturally reflects how many vulnerabilities remain exposed at a given time.
In this paper, to build the initial foundation, we focus on a single subsystem or component. The
single-component model can be naturally extended to multi-component or multi-organizational
settings; we briefly discuss such extensions in Section 9.

The size of the associated attack surface at time ¢ is represented by the stochastic process N(t),
which we model as the number of jobs in a queue. Here, arrivals correspond to the appearance
of new vulnerabilities, and services represent their removal through patching or exploitation’.
Let V() denote the arrival process of vulnerabilities, and Ny(t) and Nj(¢) denote the cumulative
numbers of defended and exploited vulnerabilities up to time ¢, respectively, as shown in Fig. 1.
The discrete-time evolution of the attack surface size is given by

N(t +1) = {N(t) + V(1) - [Na(t) + Ni(D]}", 1)

where {-}* = max{-, 0}. Modeling the attack surface as a queue makes explicit the role of backlog:
vulnerabilities accumulate when arrival rates exceed patching capacity, and shrink only when
defenses can keep up. This recursion embodies the key intuition: new vulnerabilities enlarge the
attack surface, while patching and exploitation act as concurrent removal mechanisms. As shown
later in our empirical analysis (Section 6), both the arrival and lifetime processes exhibit burstiness,
heavy-tailed persistence, and non-stationarity.

Each vulnerability is subjected to a race condition between defensive and offensive actions. Let
D, and Dj denote random variables representing the defense time and exploit time, respectively.
For each active vulnerability,

Ds = min{Dy, D;}, (2)
determines its completion time, and the winner of the race s = argmin{Dy, D;} increments the
corresponding counter N(t). For instance, if Dy = 1072 and D; = 103 for a given vulnerability,
the attacker acts ten times faster, leading to an exploit departure. This race captures the operational
reality that a vulnerability remains exposed until either it is patched or it is exploited.

We define p4(t) and p(t) as the instantaneous total mean service rates for the defense and
exploitation processes, respectively. These rates quantify how quickly vulnerabilities are removed,
either by defenders or attackers, at time ¢. Both sides may act on multiple vulnerabilities concurrently

IRemoval of a job upon exploitation is optional in the model. One may assume that a vulnerability can be exploited multiple
times, before it is removed/patched from the surface queue.
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with the defensive limitation of simultaneous processing across m parallel servers under a fixed
total capacity b. In practice, defensive prioritization or limited concurrency can be modeled by
reducing m or adjusting per-server service rates. Here, b denotes the organization’s defense budget,
interpreted as the maximum aggregate patching effort that can be sustained at any time. Hence,

pa(t) <b. 3)

These characteristics motivate the adoption of a general G/G/m—b model rather than simpler
memoryless abstractions. Note that in Kendall’s notation, the standard G/G/m/k framework [6]
uses k to denote the maximum number of jobs allowed in the system (i.e., a queue-length capacity
constraint). In contrast, our G/G/m — b notation utilizes m to denote the number of parallel servers
and b to represent the aggregate capacity constraint imposed on the total service rate, effectively
modeling resource-limited defense operations. This general model is necessary to capture bursty
arrivals, heavy-tailed patching times, and hard capacity limits, which are not represented by
memoryless queueing models.

Unlike classical queueing models with independent service rates, both p;(¢) and p;(¢) may
depend on the current attack surface size N(t). As N(¢) grows, defenders must divide limited
resources across more vulnerabilities, while attackers benefit from the expanded surface. This
coupling creates a feedback effect: when the number of active vulnerabilities increases, the same
defense capacity must be shared across more items, slowing down patching on each vulnerability,
while attackers face more exposed targets and thus have more opportunities to succeed. For instance,
14(t) may decrease inversely with N (t), while y;(t) increases proportionally to N(t), reflecting
the asymmetric scalability of attack versus defense. The interplay between these processes governs
the temporal evolution of the attack surface.

Variations of the Model: Throughout this paper, we consider several specializations derived from
our model:

e Temporal variation analysis: We use the limiting case M/G/oo, which isolates temporal
effects such as heavy-tailed persistence and LRD without capacity constraints, to build
a theorem on how the heavy-tailed nature of the arrival and service processes affect the
attack surface variations.

e Data integration: In Section 6, the model is instantiated as G/G/m~-b in its full generality
to capture bounded defense capacity and bursty vulnerability arrivals observed in the ARVO
dataset.

e Dynamic defense design and optimization: In Section 8, we use the G/G/1 — b variation
to build the RL framework, where a single effective defense rate yi4(t) is adaptively controlled
under resource and switching constraints.

4 Problem Formulation

Building on the stochastic queueing model above, we now formulate the adaptive defense problem.
The objective is to allocate limited defense resources over time to minimize long-term exposure
and breach costs, while accounting for reconfiguration (switching) overhead.

At each time step t, the defender selects a defense (patching) rate y4(t) subject to the resource-
budget constraint p4(t) < b, while the effective exploitation rate y;(t) evolves according to the
coupled arrival-service dynamics defined earlier. The resulting queue length N(#) captures the
number of active vulnerabilities and thus represents the instantaneous attack surface size. The
control task is to design a policy 7 = {pd(t)}tT:1 that balances: (i) risk reduction through faster
patching, (ii) efficiency in total resource use, and (iii) stability against frequent reallocations.

We study two core problems that together form the foundation of our framework. The first
focuses on data-driven model inference and empirical validation, while the second develops an
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adaptive control policy for dynamic defense allocation. Each problem highlights a distinct analytical
or algorithmic component of the overall approach:

(P1) Data-Driven Characterization and Model Validation.
Given a set of event-level vulnerability data containing discovery and patch timestamps,
we aim to find the optimal parameters 6* that minimize the statistical distance between
the empirical queue-length distribution (QLD), denoted by P, and the simulated QLD, P(6),
generated by the candidate model. Formally, we define:

gleig d(P,P(0)) 4)

where d(-,-) is a divergence metric, specifically the Kullback-Leibler (KL) divergence in
our implementation. © is the parameter space for the G/G/m — b queueing model, where
0 = {m, b, F1, Fs7} includes the number of servers m, total capacity b, and the parametric
distributions for inter-arrival (IA) and service times (ST).
Solving (P1) yields a segmented and validated model that captures the non-stationary
and heavy-tailed behavior of real-world vulnerability dynamics, providing the empirical
foundation for the adaptive defense control in (P2).
(P2) Learning-Based Adaptive Defense. This problem aims to develop a learning policy that
adaptively controls y4(t) to minimize cumulative cost, i.e.,
r N
min 3 E|C() + (D]l
{fa(1:T)} 4
+g(IAa() = Fat = Dlee) (5)
sub.to:  jig(t) <b, t=1,...,T,

where || - ||, represents the £,, norm. The expectation reflects stochastic variability in attack
arrivals and patching delays. The first term C(ﬁl(t)) penalizes exploit success proportional
to the instantaneous attack surface size, the second term ||fig(t)||; captures cumulative
resource use, and the third term g(-) models the switching cost for defense reconfiguration.
Note that in contrast to abstract policy-adaptation cost in existing work, this switching cost
is proportional to the magnitude of change in executed actions. The # norm in the second
term captures the total defense effort expended over time, corresponding to cumulative
patching resources. In contrast, the £, norm in the third term measures the largest change in
defense rate between consecutive time steps, reflecting the operational cost of reconfiguring
defense actions rather than the frequency of policy updates.

Before introducing adaptive defense strategies, we first analyze a few simple scenarios under
basic static allocation case to build some intuition on attack surface dynamics.

5 Ilustrative Examples: Static Resource Allocation

We begin with a simple baseline that assumes a fixed defense allocation. This example is not
intended to represent a realistic situation, but rather to build intuition about how defense capacity
and vulnerability arrivals interact in a queueing system. In this example, we assume memoryless
arrivals and departures from our queue. These insights will help us better interpret the results in
the later sections, where we relax the memoryless assumption.

5.1 M/M/oo Abstraction

The memoryless nature of the arrival and service processes with the M/M/co queue removes
temporal correlations and capacity interactions, allowing us to focus on how vulnerability arrivals
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Fig. 3. Probability mass function for the size of
the attack surface with Al usage. Distribution
remains identical under symmetric Al scaling
while a major degradation is observed with no
Al use on the offense.

Fig. 2. Probability mass function for the size of the
attack surface for different defense rates. Surface size
is scaled 0-100% for visual interpretation.

and fixed defense capacity jointly determine attack surface size and exploitation rates. The state of
the associated M/M/oco system can be represented as a Markov chain with countable state-space.

As described in Section 3, in our analyses we assume that organizations have fixed amount of
cyber resources and allocate the full amount without a variation from one episode to another. In
particular, the rate of the successful defense process piy = @A remains constant and thus independent
of N (t) where A is the arrival rate for V (¢), the (stationary) vulnerability process, and « is a constant
such that aA < b. Here, uy denotes the total defense rate. The variable « signifies the intensity
of the defense. As an example, if @ = 1, we say the defense rate is 100% or if « = 0.5, we say the
defense rate is 50%.

On the attacker side, we assume the rate of the successful exploitation process grows proportional
to N(t) as a larger number of active vulnerabilities attracts more attack attempts targeting the
exposed surface, growing proportional to the attack surface size. Hence, p;(t) = fAN(t), where f
is a constant denoting the intensity of attacks on the organization.

In Fig. 2, we illustrate the probability mass function (PMF) of the state of the attack surface. Here,
we picked a constant and normalized the observed queue sizes with respect to that constant. As a
result, the queue size is denoted as a “percentage” in the figure, rather than an absolute value. We
took the vulnerability arrival rate as A = 100 per unit time and = 0.001. We have plotted three
different PMFs for different values of defense rate: « = 100%, 25%, and 10%.

The curve with the full (100%) defense rate leads to a small expected surface size of E [N ()] =
13.2% and a time-averaged breach rate of lim; o %]E [N;(t)] = 6.79 breaches per unit time, much
lower than the time-averaged defense rate, which happens to be

lim lE [Na(B)] = A - tli_)n(r)lo %E [N;(¢)] =93.21.

t—oo

As the defense rate decreases, the expected surface size and exploitation rate increase sharply. At
a = 50%, the expected surface size grows to 52.1% with a substantial breach rate of 69.69. This
means, there are more than twice as many breaches as there are successful defenses. Breach rate
grows even further to 84.16% as we further decrease the defense rate to 10%. The interesting thing
here is that, the expected attack surface size in this final situation remains at 57.44, very close to
the case with a = 0.25, despite a significant decrease to ¢ = 0.1.
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The above situation can be explained by the fact that, as the surface size grows, much of the
departures are caused by a breach rather than a successful patch. As a result, the average surface
size remains relatively static, however the instantaneous fluctuations above the mean are quickly
exploited by the growing set of attackers. As a result, even though one may think that the attack
surface is not much higher, the breach rate grows at a much higher pace with reduced defense rate.

Our initial results demonstrate a phase-transition phenomenon in the attack surface size
distribution. Once the defense rate goes below a certain point, the surface distribution shifts sharply
and abruptly to the right. Further reducing the defense rate beyond that shifting point does not
change the disribution considerably. This observation underlines the importance of keeping a
disciplined security posture for an organization and the resources should be allocated to have a rate
at least identical to (if not much higher than) the rate of growth in vulnerabilities. For example, if the
defense rate is set to @ = 200%, the expected attack surface size remains below a single vulnerability,
while the average breach rate is merely 0.29 per unit time! Our results show that a small increase
in resources can substantially improve protection against breaches, whereas insufficient resource
allocation leads to sharply degraded security performance.

5.2 Al-driven Dynamics

We continue the illustrative analysis with the memoryless model to study how Al-driven accelera-
tion of vulnerability discovery and response affects attack-surface dynamics, captured through a
simple rate-scaling abstraction. Let us introduce an Al amplification factor that scales the arrival
and service rates and study its effect under symmetric and asymmetric amplification of attack and
defense capabilities. We scale the vulnerability arrival rate and the exploitation rate by the same
factor a, so A — ad and y; — ay;. In the second part, we will scale the defense rate py with the
same rate, to evaluate the impact of the use of Al on the defensive side, as well as the attackers’
side.

In this example, we use the same amplification factor across the three pillars of the model.
Our intention here is to illustrate the drastic shift in temporal dynamics even when there is no
change in the spatial dynamics of the surface. Also, we show the dynamics under asymmetry in Al
amplification between attack and defense, where the asymmetry is in the favor of the attackers.

Similar to Section 5.1, we use pig(t) = aA, where « is the defense rate and y;(t) = fAN(t). We
provide the probability mass function for the attack surface for three different situations:

(1) No Alis used (i.e., a = 1) on either the offense or the defense. Here, we choose the vulnera-
bility arrival rate A = 5, defense rate @ = 50%, and the attack rate f = 0.005;

(2) Al used on the attack and defense with an Al amplification factor of a = 4 on both sides.
Here, the A = 20, is amplified by a compared to the previous case and both the attack and
defense resources are also benefiting the same rate of amplification.

(3) Alis used on the attack side only. As a result, the overall defense resources remain at 2.5
units as in the original situation, while the vulnerability arrival rate and the attack rate
scale with the AT amplification factor a = 4.

In Fig. 3, we illustrate the attack surface distributions for Cases (1-3) above. For Case 1 (no Al), the
expected surface size remains at E [N(t)] = 42.48% at a defense rate of 2.5 patches per unit time
while the exploit rate is 2.06 exploits per unit time.

Notably, when Al-driven acceleration is applied symmetrically to both attack and defense, the
steady-state distribution of the attack surface remains unchanged, even though vulnerabilities
arrive and are processed at a faster rate. However, all event rates scale with the amplification factor.
In particular, the exploitation rate increases from 2.06 to 8.24 exploits per unit time, i.e., by a factor of a.
Thus, while the shape of the attack-surface distribution is preserved, successful exploits occur more
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frequently due to the accelerated underlying dynamics. This observation highlights that symmetric
acceleration primarily compresses the time scale of events rather than altering the distribution
itself, and suggests that simply matching attack acceleration with defensive acceleration may be
insufficient to reduce exploitation frequency.

Lastly, if the defense does not use Al, while the Al is used on the attack, the expected surface
size substantially increases to 80.54%. The exploitation rate is scaled up to 13.23 per unit time,
demonstrating a super-linear increase with Al amplification factor. This observation shows that
an asymmetry in the Al usage in the favor of the attack side leads to a disproportionately higher
increase in the rate of successful exploits. This scenario illustrates how asymmetric acceleration on
the attack side can significantly worsen backlog and exploit rates under fixed defense capacity.

The illustrative examples above demonstrate how fixed and Al-amplified defense rates influence
the steady-state behavior of the attack surface. We now turn to real-world data to assess whether
these modeled dynamics hold in practice. In the next section, we integrate empirical vulnerability
data from the open-source software repositories and validate our queueing-theoretic framework
against observed attack surface behavior.

6 Data Integration: Software Supply Chain

In this section, we evaluate the suitability of our queueing-based risk model using empirical
vulnerability data. Our goal is to assess how accurately the model captures the temporal dynamics
and structural properties of attack surface evolution in operational settings. If such validation fails,
the utility of the model in guiding practical defense strategies would be limited. Once the fit is
validated, the model can be used subsequently in defense and mitigation approaches.

To that end, we implement our framework in the use case of open-source software supply chain. In
our implementation, we use the ARVO dataset [19], which aggregates more than 4,000 reproducible
vulnerabilities from Google’s OSS-Fuzz infrastructure, spanning hundreds of large-scale open-
source C/C++ projects. Each record includes rich metadata such as report and fix timestamps,
sanitizer type (ASan, MSan, UBSan), crash category (for example, heap buffer overflow or use
after free), and severity level (low, medium, or high). This information enables precise event-level
tracking of vulnerability discovery and patching. The dataset’s granularity makes it particularly
well suited for queueing-based modeling: vulnerability disclosures correspond to arrivals, while
patch completions represent service completions.

Using this dataset, we first analyze the empirical dynamics of vulnerability arrival and departures,
demonstrating that our queueing-theoretic framework provides an accurate and interpretable
representation of real-world attack surface evolution. We then show that the queueing model
faithfully reproduces the observed queue size dynamics, confirming its validity as a realistic
abstraction of complex software ecosystems. We further characterize the heavy-tailed nature of both
arrival and service processes, which reveals a systemic bottleneck that slows patch deployment and
motivate the need for adaptive, data-driven defense strategies. In the next section, we build on these
findings and propose a RL-based dynamic defense allocation algorithm that optimally distributes
defensive effort to manage the attack surface size under resource and switching constraints.

6.1 Validating the Proposed Queueing Model on the ARVO Dataset

The following steps outline our complete empirical pipeline for constructing, segmenting, and
validating the queueing model on the ARVO dataset, thereby linking theoretical formulation with
real-world vulnerability dynamics.

Step 1. Queue reconstruction and exploratory analysis: We first align vulnerability dis-
covery and patching timestamps to reconstruct the time series of open vulnerabilities N(¢). The
ARVO dataset used here provides exceptionally high resolution, tracking over 4,410 vulnerabilities
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Fig. 4. Temporal evolution of the attack surface size, Fig. 5. KL divergence versus the. number of Gauss.ian
N(t), in the ARVO dataset, showing bursty discovery, mixture components. Fit quality improves rapidly

delayed patching, and non-stationary behavior. up to about ten components, after which additional
components yield diminishing returns.

across 260 unique open-source projects from December 2016 to May 2024. Each record includes
exact event-level timestamps for vulnerability discovery and patching, alongside critical metadata
such as severity (including 1, 150 High-severity cases), detection sanitizer (e.g., asan, msan), and
specific crash types like Heap-buffer-overflow and Use-of-uninitialized-value. Figure 4 shows clear
expansion and contraction phases, with bursty arrivals followed by delayed patching, confirming
non-stationarity due to capacity limits in patching throughput.

Step 2. Segmentation via Gaussian mixture modeling: To capture these evolving patterns,
we employed a segmented modeling approach. Segments are defined as mutually exclusive, closed
intervals [fs;4rt, tena] that collectively partition the entire observation period. Within these intervals,
the arrivals and departures are statistically analyzed in isolation from the rest of the dataset to
uncover localized distribution shifts and non-stationarities in the time series. A Gaussian mixture
model (GMM) fitted to the empirical QLD identified roughly ten quasi-stationary segments, each
representing a distinct operational regime. The number of mixture components was selected based
on the KL divergence elbow curve shown in Figure 5, which indicates that model fit improves sharply
up to around ten components and then saturates. This segmentation enables locally stationary
modeling of non-stationary dynamics.

Step 3. Segment-wise parameter estimation: Within each segment, we estimated inter-
arrival and service distributions and calibrated the queue parameters (m, b) of a G/G/m—b model
by minimizing the KL divergence between empirical and simulated QLDs. In this segmented setting,
the parameter b represents the mean available defensive resource rather than the maximum capacity
used in the next section, reflecting the average effective throughput observed in each operational
regime. The resulting segmented models accurately reproduced the multimodal and time-varying
dynamics of the attack surface, confirming that segmentation is essential for representing the
non-stationary evolution observed in ARVO.

Step 4. Statistical characterization of IA and ST: After segmentation, we analyzed the sto-
chastic structure within each stationary window to identify appropriate parametric distributions
for inter-arrival (Fi4) and service times (Fst). We evaluated a wide range of candidate distribu-
tions using five divergence metrics (KL, TVD, L2, JSD, and Wasserstein). Heavy-tailed mixtures
consistently outperformed non-heavy-tailed models, such as the exponential distribution, which
underestimated tail mass and failed to capture persistence effects. As illustrated in Figure 6, for the
first segment (weeks 0-64), the best-fitting non-heavy-tailed model (exponential) yielded signifi-
cantly higher KL divergences of 1.31 for IA and 1.34 for ST. In contrast, the heavy-tailed loglogistic
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Fig. 6. 1A and ST distributions for Component 1 (weeks 0-64). Loglogistic-general Pareto fits IA (KL = 0.77);
Gamma-InverseGaussian fits ST (KL ~ 0.42).

and Gamma-InverseGaussian distributions achieved much lower KL divergences of approximately
0.77 and 0.42, respectively. These results confirm that both vulnerability discovery and patching
processes are fundamentally heavy-tailed, justifying our use of more complex G/G/m abstractions
to capture real-world long-lived exposure and temporal clustering.

Step 5. Segment-wise queue model fitting and validation: Finally, we validate that the
segmented G/G/m~-b model accurately reproduces the empirical QLD observed in ARVO. Figure 7
compares the empirical QLD with the segmented, bootstrap, and ten-component GMM fits. In the
bootstrap model, samples are drawn directly from the empirical data rather than from any fitted
distribution, providing a nonparametric characterization. As shown, the segmented G/G/m-b
model reproduces the empirical QLD with high fidelity, accurately capturing both the multimodal
structure and the heavy-tailed persistence observed in practice. Quantitatively, the KL divergence
between the empirical and simulated distributions is 0.1072, comparable to the nonparametric
bootstrap (0.1058).

Across segments, the number of servers m remains relatively stable (220-250), while the effec-
tive resource capacity b varies widely (30-270), reflecting changes in patching throughput and
organizational defense posture. Together, these results confirm that empirically calibrated queueing
abstractions replicate real-world attack surface dynamics with sub—-0.11 KL divergence, demonstrating
near-empirical precision.

6.2 Temporal Characterization of Vulnerabilities of Software Releases

The empirical fits above confirm that vulnerability service times follow a heavy-tailed distribution,
with decay exponents (u) in the range 2 < u < 3. Consequently, vulnerabilities tend to remain
active on the attack surface for extended periods, depending on the underlying defense and exploit
dynamics. Our results are corroborated by prior measurements [15] on specific networks, in which
similar observations were made that the time a vulnerability remains exploitable follows a heavy-
tailed law with a tail in Dy that decays slowly in a non-exponential fashion. Building on this
empirical evidence, we formally show that when the vulnerability patching process exhibits such
heavy-tailed behavior, the attack surface size N(t) develops long-range dependence (LRD), even
if the vulnerability arrival process itself is memoryless.

More specifically, let V(t) be memoryless with an arrival rate A (a homogenous Poisson process
for simplicity in this section). Also, we define F(t) as the cumulative distribution function (cdf) of
Dy, i.e., the service time?. A heavy-tailed distribution is characterized by a decay in 1 — F(¢), that is
slower than t™ for 2 < u < 3.

2For a vulnerability, we have that Dg = min(Dg, D).
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Fig. 7. Final integrated model: empirical QLD compared with segmented, bootstrap, and 10-component GMM
fits. In the segmented G/G/m~-b model, b denotes the mean available defensive resource rather than the
maximum capacity used in the global formulation.

Theorem 1. For memoryless V() and heavy-tailed F(t), process N (t) is stationary and it exhibits
long-range dependence.

Proor. See Appendix A for the complete proof. Here, we provide a sketch: our derivation begins
by establishing the autocovariance function of the number of customers in an M/G/co queue. We
prove that N(t) is wide-sense stationary and for heavy-tailed F(s), the autocovariance function
decays slower than (z — t)?, leading to a long-range dependent attack surface. O

LRD of the surface size implies that the impact of a vulnerability may last for an extended
amount of time. The size of the attack surface is not ergodic, making it extremely difficult for
the organization to control the cyber risk. That is, two different realizations of the process may
give completely different empirical statistics in terms of the attack surface dynamics. Therefore,
based on our analytical observation, an organization that regularly performs penetration testing to
identify, patch, and mitigate vulnerabilities can avoid long tails on the defense side, eliminating the
LRD and its negative side effects. Organizations should set up a security practice to ensure that the
vulnerability identification process occurs at regular (preferably deterministic) intervals.

Given that an organization has control over the distribution of inter-defense times, we next
develop a RL-based dynamic defense allocation algorithm to regulate the effective service times.

7 A Near-Optimal RL Algorithm for Adaptive Defense

Building on the model (Sec. 3) and the analytical insights into static allocation, temporal dependence,
and Al-driven dynamics (Secs. 5 and 6), we now build a systematic approach to the dynamic defense
problem. To that end, we present a near-optimal RL algorithm for adaptively allocating constrained
resources to dynamic defense, while accounting for switching costs. This learning-based approach
is needed because the arrival and service processes governing the attack surface are unknown and
may change over time. The RL agent represents an adaptive defender who episodically reallocates
limited patching or monitoring resources across a dynamic vulnerability queue. The transition
dynamics of the attack surface process are unknown. The policy switch for each episode corresponds
to an operational reconfiguration (e.g., retuning patching pipelines or reassigning response teams),
hence incurring measurable overhead modeled as a switching cost.
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7.1 Problem Setting and RL Framework

Specifically, this section provides the solution to the constrained optimization problem stated in (5),
where the defender seeks the optimal dynamic defense policy under uncertainty.

Setting: We apply the episodic Markov decision process (MDP) to model the dynamic defending
problem. As assumed in standard episodic MDPs, we consider H steps of interaction between the
defender and the attack surface in each episode3 t=1,...,T. Ateach step h = 1, ..., H, based on the
observed state N (t) of the system, the defender can take a defense action ,ug(t) according to a
policy 7; : N — iz, where N = {1,..., N} is the system state space and fiz = {14} is the defense
action space. The defense must satisfy the resource-budget constraint uZ(t) < bforall h and t.
After the defense action, the state evolves according to Eq. (1). The episodic formulation reflects
practical operation cycles, such as periodic defense planning or monitoring windows, during which
defense rates are adjusted based on observed backlog.

Given any state N” at step h, the defense action given by the current policy 7, (-) could be different
from that given by the policy ;-1 (-) in last episode, in which case there will be a switching cost

S*(t,N") 2 w - |7, (N") = m,_1 (N")

penalizing the change in defense across episodes, e.g., for parameter retuning, budget reallocation,
and recontracting. This cost captures the operational overhead of changing defense intensity,
rather than merely how often changes occur. Therefore, the goal is to find a desirable algorithm 7=
that optimizes the expected cumulative penalty and defense cost over all steps and time-slots by
executing the policies 717, i.e., min,, , Y1_, [V™ + S8™]. Here, the ‘V-value function is defined to

be
ve 2257 [e{wbo) o]

where the expectation is taken with respect to the randomness of the state transition (1) and the
race condition, and with a slight abuse of notation, the total switching cost is defined to be

stLp[yt S L SN ©)

Performance Metric: We use the standard regret as the metric to evaluate the performance of RL
algorithm 7, which is defined to be

Reg(T) 2 1 [V +8™ '], )

i.e,, the difference between the expected cumulative cost of the RL algorithm 7 and the expected
cumulative cost V* of the optimal policy 7* = argmin . nny<pvnnny V- Note that the optimal
policy knows all problem parameters and does not change the policy. Thus, there is no switching cost
and we drop the round index t. Intuitively, this regret measures the cumulative excess vulnerability
exposure incurred by the learning defender relative to an omniscient optimal defense strategy.
Novelties and Challenges: To our knowledge, this work is the first to analyze RL with switching
costs that quantify the magnitude of policy change rather than merely the frequency of switching.
Specifically, the term S"(t, N*) captures the absolute difference between consecutive defense
actions, measuring how much the policy changes over time. In contrast, existing RL formulations
penalize only whether 7, differs from ;_;, without accounting for the extent of change [2, 10, 26].
Moreover, we address the new challenge arising from the simultaneous presence of switching costs
and resource-budget constraints, whose coexistence has not been studied in prior RL literature.

3Compared to the fixed allocation in traditional settings, this is a finer-grained setting where the defense action is taken in
a more dynamic way.
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Algorithm 1 Dynamic Defense Under Resource Constraints and Switching Costs

1: Parameters: n = andc > 0

2: Initialization: Q-value functions Q"(N, y14) = H and Q*(N, yig) = Q"(N, j14), state-action
visitation counts N”(N, yig) = 0, where N represents the number of vulnerabilities in the
queue, and 1y represents the defense action

3: fort=1:T do

4 forh=1:Hdo
5: Take defense action
Hh(t) = argmax, ) Q" (N" (1), i)
6: Based on the arrivals of vulnerabilities and race condition, the queue state evolves to
N"*1(t) according to Eq. (1)
7: Update the defense changing parameter

k= NE(N(2), i (1)) + 1
8: Update bonus B(k) = cy/H?3/k for defense exploration

9 Update the estimate-Q-value function according to Eq. (8).
10: Update the estimate-V-value function
Vh(N"(t)) = min {H, max,,,; Q"(NH (1), pd)}
11: if t € {t,}n>1 then
12: Update the belief-Q-value
Q"(N*(1).) = Q"(N"(1).)
13: end if
14 end for
15: end for

7.2 Algorithm Design

Our algorithm maintains two Q-value estimates. One is updated continuously to learn from new
data, while the other is updated less frequently to determine defense actions and limit switching
costs, which is detailed in Algorithm 1. The algorithm outlines the core RL update under delayed
policy switching. The algorithm maintains an optimistic Q-estimate, updated periodically according
to a geometrically increasing triggering sequence to balance responsiveness and stability. From
a high-level point of view, we take the defense action according to an optimistic belief-Q-value
function. Specifically, at each step, our algorithm first updates an estimate-Q-value function, which
represents the value of taking a certain action at a state (line 9). An action with larger estimate-Q-
value function output is preferred. Intuitively, the belief-Q-value function should be updated more
frequently when the sample size is small (i.e., the uncertainty is large), and it should be updated
less and less frequently when the sample size becomes larger and larger. To achieve this, a delayed
belief-Q-value function is updated when it has not been updated sufficiently long and triggers
a switching threshold. Hence, to achieve effective defense with low switching costs, we need to
carefully construct an effective belief-Q-value function to guide the defense action and construct
an elegant triggering time sequence {t,},>; for updating the belief-Q-value function (lines 11-12),
as well as for changing defense actions. Operationally, this design avoids frequent reconfiguration
while still allowing rapid adaptation when uncertainty is high.

Specifically, in Line 7 of Algorithm 1, we first update the number of times the state N”(t) and
defense action ,ug(t) are visited simultaneously, which will generate the bonus term in Line 8.
This bonus term essentially captures the level of uncertainty after collecting k samples, such
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that according to the concentration inequality (e.g., Hoeffding’s inequality), the estimate-Q-value
function is an optimistic estimate of the optimal true Q-value with high probability. To guarantee
this, we update the estimate-Q-value function as follows,

Q" (N"(1), py(1) = (1 = a(1)Q"(N" (1), (1))
+a(t) [(C+b—C(N (1) + (1) /(C +b)
+VPUND(1) + B(k)], (8)
where C = sup{C(-)}. This estimate-Q-value is an weighted average between the old estimate-

Q-value éh(N (), pg (1)) (for exploiting the knowledge learned from historical samples) and the
newly learned knowledge from currently visited state-action pair

[(C+b— (CNP () + 5())/(C +b)] ©)
+ (‘}h+1 (Nh+1 (t)),
together with a bonus term B(k) (for encouraging exploration of potentially better defense strate-

gies).

Finally, lines 11 and 12 determine whether or not to change the belief-Q-value function that
will directly determine the defense action pi4(t). Let 7(i) = [(1 + e)i] fori=1,2,..., and define the
triggering time sequence as

{tntnsr = [L7 ()] U{r (o +1),7(o +2),.. .}, (10)
log(10H?)
log(1+n)
Tlast () :=max {t, : t, <t} and a(t) = % The triggering time sequence (10) allows policy switch
every time-slot at the beginning, and then the delay for policy switch keeps exponentially-increasing
after a certain amount 7(iy) of samples has been collected. For example, the policy switches as

follows. Given state N"(t) at step h, we take some particular defense ,uZ(t) for time ¢, and update

where € and iy = [ ] are hyper-parameters chosen by the algorithm. For all t € {1,2,...},

both the estimate-Q-value and the belief-Q-value immediately. After the time-slot 7(iy), we still
update Q immediately. However, we only update Q when ¢ is in the triggering time sequence.
This exponentially delayed update schedule enables high responsiveness early on and stability as
uncertainty decreases, effectively balancing adaptation and switching cost.

7.3 Theoretical Regret Bound: Near-Optimality

We show that the proposed algorithm achieves near-optimal regret with high probability. In
particular, with high probability 1 — p, the theoretical regret of our algorithm is upper-bounded by
O(NT), which is optimal. Recall that the regret is defined to compare our RL performance with
the optimal policy, which is an oracle defender with full knowledge of system parameters and no
switching penalty.

Theorem 2. (Regret Upper-Bound) With high probability 1 — p, p € (0, 1), the regret of
Algorithm 1 is upper-bounded by O (VH3C4bT) for any horizon T = Q (H*C?b?).

Proor. See Appendix B for the complete proof. Here, we provide a sketch. The proof follows
optimism-based analysis for episodic RL, with new developments to handle the delayed defense
switching and resource budgets. Let Q" (1) denote the estimate-Q-value function, which is contin-
uously updated from new samples, and let Q" (t) denote the belief-Q-value function, a stabilized
version used for policy decisions and updated only at triggering times {t, },>1. The proof involves
the following key ideas.
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i) Optimism and Concentration: Each Q" (t) update uses a step size a(t) = Z*L and an exploration
P p p Het p

bonus B(k) = c/H?log(1/p’)/k. By standard concentration arguments (e.g., Azuma-Hoeffding
inequality), with probability at least 1 — p’, the estimate satisfies

0<Q"1t)-Q*" < B(k) = é( %3)

uniformly over all (h, N, p, t), where Q*" is the optimal Q value. This ensures optimism: the learned
Q-values upper bound the true optimal values within 8(k).

(ii) Regret Decomposition: Let 5 (t) = Vh(t) — V" denote the instantaneous regret at step h in
episode ¢. Since the policy 7; is derived from the most recently updated Q" (k') at trigger k’ <t, we
decompose

(1) < 1(@"(K') - @™ M| + Q" (k') - Q" (K,
where the first term behaves as in standard optimistic RL, while the second term measures the
deviation caused by delayed updates.

(iii) Controlling the Delay via Triggering Sequence: Between two triggers, Q evolves according
to small step sizes and bounded bonuses. Under the geometrically increasing triggering schedule
tn = [(1 + €)"], the cumulative deviation )}, Q" (K'Y — Q("K)| grows at most by a constant factor
1+ O(1/H) relative to non-delayed updates. Hence, the delay introduces only a multiplicative
O(1/H) overhead.

(iv) Error Propagation over the Horizon: Summing the per-step inequalities and propagating value
errors through the horizon yields

R" < (1+0(1/H))R"! + O(VH3T),

where R" = 3, 6"(t). Unrolling across h = 1,...,H gives Y, R" = O(Vﬁ) Including bounded
per-step costs C and feasible budget b scales the bound to O( VH3C*bT).

(v) Switching Costs: The number of belief-Q-value updates, and hence policy changes, is logarith-
mic in time. Thus, the cumulative switching cost contributes at most O(log T) to regret, absorbed
by the main term.

Combining the above, the total regret then follows.

O

To the best of our knowledge, this is the first regret bound established for dynamic defense under
the coexistence of resource-budget constraints and switching costs for amount of changes.

8 Numerical Evaluation

We now evaluate the proposed framework through a series of numerical experiments that com-
bine model-based simulations and data-driven evaluations. These experiments evaluate how the
RL defense policy performs under both synthetic and real-world conditions, focusing on attack
surface size and exploitation rates. The analysis proceeds in three parts: (i) controlled model-based
simulations to verify core dynamics, (ii) trace-driven evaluation using the ARVO dataset, and (iii)
aggregate-budget simulations that examine RL reallocation under realistic resource constraints.

8.1 Model-based RL evaluation

We begin with controlled simulations based on the analytical model introduced in Section 4. These
simulations evaluate the RL defense policy in a simplified environment where all system parameters
are known. The results highlight two main effects: (i) the RL policy’s ability to reduce success-
ful exploits compared to fixed allocations, and (ii) its smoothing behavior under nonstationary
vulnerability arrivals.
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Fig. 8. Successful exploit rate vs. per-step defense budget (patches per unit time) under Model-based RL
simulations.
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Fig. 9. Trace-driven comparison of queue-length Fig. 10. Queue-length histogram under the empirical
probability densities on ARVO (RL vs. baseline) for ~ aggregate baseline budget and the RL-reallocated
per-step budget b = 1.0 patches per unit time. policy. Statistics are reported in the text.

Setup: We consider T = 10* rounds, each with H = 10 steps, and use the model ,(t) = 3N (t)
for exploitation rate in these runs. Vulnerability arrivals are drawn under two regimes: (i) stochastic
arrivals with rate A = 5 at every step, and (ii) adversarial arrivals that vary arbitrarily in [0, 10].
We compare a fixed defending policy (constant per-step ) to the learned policy produced by our
RL procedure, sweeping the per-step defense budget b (measured in patches per unit time) and
plotting the resulting successful exploit rates.

Results: Figure 8 shows successful exploit rate versus defense budget for the two arrival regimes.
The learned policy reduces successful exploits substantially across budgets and attains up to a 55%
reduction for certain budget points in the stochastic regime. In the adversarial regime, the learned
policy both reduces the mean exploit rate and smooths high-frequency fluctuations compared to
the fixed allocation, reducing both the mean exploit rate and its variability compared to the fixed
allocation. The reduction in variability improving predictability of performance, thereby enables
an organization to better plan their budget to achieve a specific goal against the attacks.

8.2 Trace-driven RL evaluation

We now evaluate the RL defense policy using a trace-driven simulator built from the ARVO dataset.
Vulnerabilities arrive at each time step according to the ARVO records. The empirical per-step
defended counts from ARVO define the trace-driven baseline. At each time step, the RL agent
observes the current queue length (the number of active vulnerabilities) as the state and selects a
defense-rate action. The simulator maps this rate to an integer number of defended vulnerabilities
and updates the next state accordingly. We then compare the RL policy against the ARVO baseline.

Setup: We preprocess the ARVO data by binning records into 6-minute intervals; each bin is one
time step and ten consecutive bins form an episode (one hour). This produces T = 64,395 episodes.
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Table 1. Trace-driven comparison statistics: queue-length mean & variance (ARVO, RL vs. baseline).

Policy / Budget (patches per unit time) Mean Variance

Baseline (data) 219.9 30,930
RL (b=0.5) 59.4 1,602
RL (b=1.0) 13.0 219
RL (b=1.5) 47 56
RL (b=2.0) 1.2 6
RL (b=2.5) 0.1 0.4
RL (b=3.0) 0.1 0.3

Here, the defense budget b represents the maximum number of patches that can be applied per unit
time. We do not split the data into separate training and test sets; the full trace is used for learning
and we observe the result of the learning. For each bin, the number of reported vulnerabilities
is used as the stepwise arrival count, and the empirical defended counts in ARVO serve as the
baseline defense events. The RL agent observes only the arrivals and selects a defense-rate action;
the simulator maps that rate to an integer defended count via a Poisson draw and updates the next
state accordingly. The selected rate is converted to an integer defended count by drawing from
a Poisson distribution and truncating to the nearest nonnegative integer. At each step, both the
baseline and the RL defended counts (together with the arrivals) are applied to update the queue
state according to Eq. (1). The ARVO trace does not include separate attacker exploit events, so our
trace-driven evaluation considers only vulnerability arrivals and defenses.

The RL action space is {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} and at each step the agent selects a defense-rate
action p from this set. Because the agent is table-based, we set the maximum indexed queue size
for the Q-table to Npmax = 300; if a larger queue is observed the agent still uses the Ny,ax index for
action selection, while we record the actual queue length for statistics. We use a per-step budget b
(not an episode-level budget) and sweep b € {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} patches per unit time across
simulations. As each time step represents a 6-minute interval, a budget of b = 1.0 corresponds
to an average capacity of 10 patches per hour. The optimistic bonus in the Q-value update is
B(k) = chonusVH? /k with cponus = 0.1. To ensure a fair comparison, we tune a weight on the RL
defense cost so that the RL policy’s total defended count over the full trace matches the empirical
baseline’s total defended count. All other algorithmic settings follow Section 7.2.

Results: Figure 9 shows the queue-length density when per-step budget is b = 1.0 patches per
unit time. For each budget b, we average results over 5 random seeds and report the queue-length
mean and variance for the RL policy and the baseline in Table 1. The RL policy consistently reduces
the queue length compared to the baseline, and the gains become larger as the per-step budget
increases.

8.3 Aggregate-budget RL reallocation

We next compare the baseline and RL when both use the same aggregate defense budget estimated
from the data in Figure 7. Specifically, we ask how queue-length performance changes if the RL
policy is allowed to reallocate, over time, the total defense rates used by the baseline.

Setup: Following Figure 7, we segment the ARVO trace into ten regimes and estimate the baseline
per-segment defense rates. In this subsection, we keep the ARVO arrivals unchanged and generate
the baseline defended counts by drawing Poisson samples with the estimated per-segment rates.
We then sum the baseline’s defense rates over the full period to obtain its aggregate defense budget.
The RL operates as in Section 8.2 but is constrained so that its total defense effort over the full
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period does not exceed this aggregate budget. This allows us to evaluate RL reallocation across
steps under an equal total defense resource.

Results (representative run): Figure 10 plots the queue-length densities for the baseline (with the
estimated defense rates) and for RL (with aggregate-budget reallocation). RL substantially reduces
large queue lengths compared to the baseline. The summary statistics are mean(N) = 146.63,
Nys =379, and Nog = 412.2 for RL. mean(N) = 267.52, Nos = 772, and Ny9 = 852 for baseline. Thus,
RL reallocation substantially reduces the mean queue length and shrinks the high-percentile tails
of the distribution.

9 Discussion and Future Directions

We introduced a spatio-temporal queueing abstraction for the attack surface that models incoming
vulnerabilities as arrivals and departures as either successful exploits or successful patches, and
used this framework to derive several analytic insights. In particular, we highlight (i) a highly
non-linear relationship between defense-resource shortfall and the rate of successful exploits, (ii)
the emergence of long-range temporal dependence in the attack surface process when vulnerability
lifetimes are heavy-tailed, and (iii) the fact that an aggregate Al-amplification of arrival and exploit
rates can increase breach rates even when the attack surface distribution remains qualitatively
similar.

While our analysis primarily focuses on a single-component system for clarity, the framework
naturally extends to multi-component and multi-organizational settings. An organization’s total
attack surface can be viewed as a collection of correlated queues, each representing a subsystem such
as authentication, storage, or cloud services. At a larger scale, an ecosystem of organizations can
be modeled as a network of statistically dependent queueing systems, capturing interdependencies
arising from shared software libraries, third-party integrations, or supply-chain relationships. For
tractability, we restrict our formal analysis to the single-queue case, which already exhibits the
essential dynamics of heavy-tailed persistence, feedback coupling, and resource constraints that
characterize real-world attack surface evolution.

Building on these foundations, natural directions for future work include extending the queue-
ing abstraction to multiple, dependent queues that reflect component structure; modeling the
ecosystem of multiple organizations (and their interactions) as an interconnected queueing sys-
tem; exploring collaborative defense formulations (e.g., multi-agent approaches) under resource
constraints; and expanding empirical data collection to strengthen and validate the modeling
assumptions.

10 Conclusion

We introduced a novel queueing-theoretic formulation to model the evolving cyber-attack surface,
capturing both its temporal dynamics and spatial structure. Rather than following a narrow perspec-
tive that would focus on isolated attack vectors or specific vulnerabilities, our approach provides a
holistic framework that reveals how systemic behaviors—such as heavy-tailed patching times—lead
to long-range temporal dependencies in vulnerability exposure. The model also accommodates
Al-induced amplification effects, allowing us to quantify the spatio-temporal dynamics of the
attack surfaces under Al-generated threats and defenses. This dynamic queueing abstraction also
lays the foundation for a principled defense allocation strategy, which we cast as a constrained
sequential control problem and solve using reinforcement learning. We validated the framework
using large-scale open-source vulnerability traces and show that an RL-based adaptive defense
policy with near-optimal regret can reduce the mean attack surface size and the high-percentile
tails under the same aggregate budget.
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A Proof of Theorem 1
Let us define the indicator variable:

1, avulnerability arrives in ((i — 1), i6)
Ii(t) = and still in the system at time ¢
0, otherwise

for 6 being the amount of temporal increment. Therefore,

t/8
N() = > L), (11)
i=—00
For any ¢, r such that t < 7,
t)5 /8

EINOND]=E| Y > L)L)

i=—00 j=—o00
t/8
= > ELOL@]+ ) EL®L)]
{ist/6.j<t/8 | i#j} i=—00
t/6
= > ELMIE[LO]+ ) ELOLEO], (12)

(i<t/8.j</5 | i#]} i=—oo

where Eq. (12) follows since I;(¢) and I;(7) are independent for i # j. We can also write

t/d /8
E[NDIEIND] =E| > LH|E| Y (D)
i=—o0 j=—o0

= > EULMIE[L(D)]
{ist/s.j<t/8 | i#j}
t/8

+ > EILMIE[L(D)]. (13)

i=—oc0
Combining Eq. (12) and (13) we get,

cov (N(2), N(7)) =E[N())N(r)] -E [N()]E [N(7)]
t/8

Z {E[L(OL(D] -E[L®O]E [L(n)]} (14)

t)8

Z {AS[1 = F(z - i8)] — 0(8)}, (15)

i=—o0
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where the first term in (15) is due to E [I;(¢)I;(7)] and the o(5) is due to E [I;(¢)] E [I;(7)] and that
the probability of two vulnerabilities in the same instant is 0(8). As § — 0%,

0o

cov (N(t),N(r)) = /t A[1=F(r—s)]ds=2A [1-F(s)]ds. (16)

l—t|

Since the above covariance is a function of the time difference ¢ — 7 only, {N(t)} is a stationary
process. Thus, for heavy-tailed F(s), the autocovariance function decays slower than (z — t)?,
leading to a long-range dependent attack surface.

B Proof of Theorem 2

Proor. For readability, we remove some indices when the context is clear. Recall that éh(t)
denotes the estimate-Q-value function, continuously updated from new samples at step h and time ¢,
while Q" (t) denotes the belief-Q-value function, a stabilized version used to determine the defense
action and updated only at triggering times {t, }n>1.

Step 1: Instantaneous regret decomposition: Let 8"(1) be the instantaneous regret at step h
and time ¢. Following the standard optimistic decomposition,

§(6) = (max {@" (), @"(0)} - @ )N (1), (1))
<1Q" () - @M +1Q"(1) - Q" (1), (17)
where t7 = 71,5t (t) + 1 denotes the most recent triggering time before t. The first term corresponds

to the standard value-estimation error, and the second term represents the additional deviation
introduced by the delayed belief update.

Step 2: Recursive relation for éh(t): The update of the estimate-gQ-value at visit ¢ can be

expanded as

QL (N, pg) — @"(N, 1)

et (- Q. + Yt € (N. )

i=1
+ ‘71‘?+1(N5+1 (ti)) _ Vﬂ,h+l(Nh+1 (ti))

+ (Bl = PV (N ) + B8, (18)

where a(t;) is the step size, B(;) is the exploration bonus, and ﬁt}: is the empirical transition model.
This expression separates the stochastic update noise, transition deviation, and optimism term.

Step 3: Bounding the delayed perturbation: For any ¢ > t;, the cumulative drift between two
consecutive triggers satisfies

1Q" (1) — Q" (e I(N" (1), (1))

S+ ), e+ (19)

i=Tpase (2) +1

where ¢y = O(vH3/k) and ! = O(+/H?/t) hold uniformly with high probability. Both terms can be
absorbed into a constant multiple of ¢, since ¢, < (1+ O(1/H))¢ under the geometric triggering
rule.
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Step 4: Coeflicient aggregation: When summing Eq. (19) over all time steps, each successor-state
error t'T’“ is weighted by the accumulated step-size coeflicients. Using the triggering sequence

log(10H?)

t, =[(1+¢&)"] with e = Tog (T+e)

and initial index rq = [ ], we obtain

1

2H(H+1)

Z (l{no trigger at t} a(11,5t (1)) + 1{trigger at ¢} a(t))
t

<1+ 3, (20)
showing that the delay inflates the propagation factor by at most (1 + 3/H).
Step 5: Regret recursion and final bound: Let R* = ¥, §h(1). Combining the above results yields
R" < (1+ O(1/H))R™' + O(VH?T).
Unrolling the recursion over h = 1,..., H gives Zlhizl RM = é(\/ﬁ ). Accounting for the bounded

per-step cost C and defense-cap budget b scales the bound to O(VH3C*bT). The number of belief-
Q-value updates, and hence policy changes, is logarithmic in time. Thus, the cumulative switching
cost contributes at most O(log T) to regret, absorbed by the main term.

[m]
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