
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

AQueueing-Theoretic Framework for Dynamic Attack
Surfaces: Data-Integrated Risk Analysis and Adaptive Defense

JIHYEON YUN∗ and ABDULLAH YASIN ETCIBASI∗, The Ohio State University, USA

MING SHI, University at Buffalo (SUNY), USA

C. EMRE KOKSAL, The Ohio State University, USA

We develop a queueing–theoretic framework to model the temporal evolution of cyber-attack surfaces, where

the number of active vulnerabilities is represented as the backlog of a queue. Vulnerabilities arrive as they are

discovered or created, and leave the system when they are patched or successfully exploited. Building on this

model, we study how automation affects attack and defense dynamics by introducing an AI amplification

factor that scales arrival, exploit, and patching rates. Our analysis shows that even symmetric automation

can increase the rate of successful exploits. We validate the model using vulnerability data collected from

an open source software supply chain, and show that it closely matches real-world attack-surface dynamics.

Empirical results reveal heavy-tailed patching times, which we prove that they induce long-range dependence

in vulnerability backlog and help explain persistent cyber risk. Utilizing our queueing abstraction for the

attack surface, next we build a systematic approach for cyber risk mitigation. Toward that end, we formulate

the dynamic defense problem as a constrained Markov decision process with resource-budget switching-

cost constraints, and develop a reinforcement-learning (RL) algorithm that achieves provably near-optimal

regret. Numerical experiments validate the approach and demonstrate that our adaptive RL-based defense

policies significantly reduce successful exploits and mitigate heavy-tail queue events. Using trace-driven

experiments on the ARVO dataset, we show that the proposed RL-based defense policy reduces the average

number of active vulnerabilities in a software supply chain by over 90% compared to existing defense practices,

without increasing the overall maintenance budget. Our results allows defenders to fundamentally quantify

the cumulative exposure risk under long-range dependent attack dynamics and to design adaptive defense

strategies with provable efficiency.

CCS Concepts: • Security and privacy → Vulnerability management; • Computing methodologies →
Markov decision processes;Model verification and validation; Reinforcement learning.

Additional KeyWords and Phrases: computer security, vulnerability dynamics, queueing theory, reinforcement

learning, long-range dependence

ACM Reference Format:
Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal. 2026. A Queueing-Theoretic Framework

for Dynamic Attack Surfaces: Data-Integrated Risk Analysis and Adaptive Defense. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation email (Conference acronym ’XX). ACM,

New York, NY, USA, 24 pages. https://doi.org/XXXXXXX.XXXXXXX

∗
Both authors contributed equally to this research.

Authors’ Contact Information: Jihyeon Yun, yun.259@osu.edu; Abdullah Yasin Etcibasi, etcibasi.1@buckeyemail.osu.edu,

The Ohio State University, Columbus, Ohio, USA; Ming Shi, University at Buffalo (SUNY), Buffalo, New York, USA,

mshi24@buffalo.edu; C. Emre Koksal, The Ohio State University, Columbus, Ohio, USA, koksal.2@osu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, Woodstock, NY
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal

1 Introduction
Cyber risk exhibits temporal dependence and cannot be adequately described by static or stationary

reliability models. Much of the existing approaches in cybersecurity focus on isolated attack models

or mitigation mechanisms, offering limited understanding of the holistic and time-varying nature

of vulnerabilities that define an organization’s attack surface. Modern infrastructures, spanning

cloud services, software-defined networks, and distributed APIs, further amplify these dynamics,

producing attack surfaces whose scale and evolution are often unknown even to their operators.

To address this gap, we develop a dynamic stochastic model for the evolution of the attack

surface. The model generalizes from an individual software component to an entire organization,

and ultimately to large-scale ecosystems such as industry sectors or nation-state infrastructures.

We formalize the instantaneous size of the attack surface as the number of active vulnerabilities,

represented by the queue length of a stochastic service process. Arrivals to the queue correspond

to the discovery or creation of new vulnerabilities, while departures represent either (a) successful

exploitation or (b) successful patching. This queueing abstraction makes explicit the role of limited

defense capacity, allowing attack-surface management to be studied as a resource-allocation and

backlog-control problem.

Building on this foundation, we extend the model to capture the growing influence of automation

and AI in both offensive and defensive operations. We introduce an AI amplification factor that
scales vulnerability arrival, exploit, and patching rates. This abstraction is not intended to model AI

systems in detail, but to examine how this factor reshapes backlog dynamics. Our analysis shows

that even when attack and defense capabilities scale symmetrically, the rate of successful exploits

can still increase superlinearly.

To demonstrate how accurately our proposed framework captures real-world vulnerability

dynamics, we apply it to the problem of strengthening open-source software supply chains. Using the

ARVO (Atlas of Reproducible Vulnerabilities for Open Source Software) dataset [19], which contains

over 4,000 reproducible vulnerabilities from Google’s OSS-Fuzz platform, we characterize the real-

world dynamics of vulnerability discovery and patching across thousands of open-source projects.

Event-level analysis reveals that vulnerability arrivals and lifetimes are bursty, heavy-tailed, and

non-stationary, and that segmented queueing models accurately reproduce the temporal evolution

of the attack surface size across development cycles. This temporal structure further exhibits

long-range dependence (LRD), indicating that correlations in exposure decay polynomially rather

than exponentially. In practical terms, the effects of individual vulnerabilities persist far beyond

their initial disclosure, highlighting systemic bottlenecks in patch deployment and motivating

the need for continuous, adaptive, and resource-aware defense strategies to ensure supply-chain

resilience.

Motivated by persistent patching delays and the imbalance between vulnerability arrivals and

limited defense capacity observed in both data and AI-driven analysis, we develop a reinforcement

learning (RL) approach for adaptive defense under resource-budget constraints. The defense re-

source, represented by the patching rate, directly influences the service process in our queueing

model. Our dynamic framework allows defense rates to vary over time, while explicitly incorpo-

rating such switching costs into performance evaluation. Although the resulting control problem

is analytically intractable in closed form, we design a low-complexity RL algorithm for adaptive

defense allocation under uncertainty. In addition, we rigorously establish a near-optimal regret

bound relative to an oracle defender and introduce new switching-reduction techniques that extend

the theory of constrained Markov decision processes (CMDPs).

Finally, to illustrate the practical implications of our theoretical and empirical findings, we

conduct numerical experiments to evaluate the proposed RL-based defense policy. The results

, Vol. 1, No. 1, Article . Publication date: January 2026.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

AQueueing-Theoretic Framework for Dynamic Attack Surfaces: Data-Integrated Risk Analysis and Adaptive Defense 3

show that adaptive resource allocation guided by our RL algorithm can substantially mitigate

exploit success rates, achieving reductions of up to 55% compared to static defense strategies,

while maintaining stable performance under both stochastic and adversarial vulnerability arrivals.

In trace-driven experiments using the ARVO dataset, our adaptive defense policy reduces the

average number of active vulnerabilities in a software supply chain by more than 90% compared

to existing defense practices, while operating under the same overall maintenance budget. These

findings underscore that dynamic, learning-based defense policies not only outperform static

benchmarks, but also yield smoother and more predictable system behavior. This demonstrates

how our analytical framework can directly supports real-world cyber-defense decision making.

Contributions. This work establishes a foundational framework for analyzing and controlling the

dynamics of organizational attack surfaces through a stochastic and queueing-theoretic lens. The

key contributions are as follows:

• Dynamic Queueing Model of the Attack Surface. We develop a queueing-theoretic

model that jointly captures the temporal and spatial evolution of active vulnerabilities,

providing a unified representation of vulnerability discovery, exploitation, and patching

across organizational or ecosystem scales.

• AI-Amplified Threat Dynamics.We extend the model with an AI-amplification factor that
quantifies how automation accelerates vulnerability creation and exploitation. Analytical

results show that the breach rate can grow superlinearly with automation, even when AI is

deployed defensively.

• Empirical Validation and LRD of Vulnerability Dynamics. Using the ARVO dataset,

we empirically validate the proposed queueing-theoretic framework on a real-world open-

source repository. By fitting segmented queueing models to vulnerability discovery and

patching events, we show that the model accurately captures the non-stationary and heavy-

tailed evolution of the attack surface. We further prove that such heavy-tailed service

distributions lead to LRD in attack surface size, explaining the persistent exposure patterns

observed in practice and highlighting the structural limits of static defense strategies.

• Near-Optimal Adaptive Defense via RL.We formulate adaptive patching as a CMDPwith

resource-budget and switching-cost constraints, and develop a near-optimal RL algorithm

for adaptive defense. The algorithm achieves a sublinear regret relative to an oracle defender

and produces smoother, more stable defense actions under varying attack intensities.

• Theoretical Advances in Learning-Based Defense. Our analysis introduces switching-
reduction techniques and, to our knowledge, provides the first sublinear regret guarantees

for RL under the joint coexistence of resource-budget and switching-cost constraints. These

results advance the theoretical foundation of learning-based cyber defense.

• Defense Switching Cost. To our knowledge, this work is the first to model and analyze the

amount of defense change as a measurable switching cost in RL. Specifically, the switching

cost in Eq. (6) quantifies the magnitude of consecutive policy adjustments, in contrast to

previous approaches [2, 10, 26] that penalize only the frequency of policy changes.

Together, these contributions establish a quantitative and theoretically grounded foundation for

modeling, analyzing, and dynamically defending evolving attack surfaces.

2 Related Work
Our work is related to probabilistic approaches to cyber risk analysis. The industry standard,

Factor Analysis of Information Risk (FAIR) framework [12] formalizes cyber risk quantification

through probabilistic factors such as threat events, vulnerabilities, and loss magnitude, providing a

common language for risk assessment. Broader treatments of probabilistic cyber insurance and

, Vol. 1, No. 1, Article . Publication date: January 2026.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal

risk evaluation can be found in [16]. While these approaches are influential, they largely assume

static system conditions and do not capture the evolving temporal dependencies characteristic of

modern attack surfaces.

The concept of the attack surface was formalized by Manadhata and Wing [18], and a systematic

review [29] revealed fragmented definitions across hundreds of studies. Recent large-scale analyses,

such as [9], quantified attack surfaces across government infrastructures, highlighting their scale

and complexity. These works provide valuable measurement perspectives, but they typically treat

the attack surface as a static quantity and do not model how it evolves over time or responds to

defense actions.

A related line ofworkmodels interdependent vulnerabilities through probabilistic attack graphs [30]

and their AI-based extensions [11]. Bayesian-network models [13, 23, 24] have been proposed to

estimate compromise probabilities, but these frameworks describe the system at a single snapshot

in time. We refer to such methods as snapshot models of risk, as they capture system state at a fixed

point in time and do not represent the sequential or long-range evoluation of vulnerabilities.

Efforts to incorporate temporal evolution have used Bayesian networks for industrial and cloud

systems [25, 32] and Markovian models for sequential attacks [14, 17]. These studies focus on

specific environments rather than the evolution of the attack surface as a whole. Haldar and

Mishra [8] and Feutrill et al. [5] observed that vulnerability disclosures exhibit burstiness and

long-range dependence, suggesting queueing systems as a natural abstraction. However, existing

studies do not combine such models with large-scale empirical validation or address the joint

temporal and spatial dynamics of vulnerabilitiy backlogs.

A key enabler for such modeling is the availability of event-level vulnerability data. The recently

released ARVO dataset [19] provides detailed timestamps of vulnerability discovery and patching.

Our work is the first to leverage ARVO to calibrate and validate a queueing-theoretic model of

attack surface evolution, bridging theoretical abstractions with empirical vulnerability dynamics.

The rapid integration of AI into both software development and exploitation further complicates

this landscape. While large language models (LLMs) can assist in code repair [3, 28], they also

accelerate exploit generation [4, 7, 31]. Reports by practitioners and agencies [20, 22] highlight this

dual role of AI as both attacker and defender. Yet existing models do not provide a quantitative

framework for studying how automation simultaneously affects vulnerability discovery, exploita-

tion, and patching dynamics. Our use of an AI amplification factor is intended to capture these

rate-level effects in a tractable way.

Finally, constrained and safe RL has been studied under budget [1, 21, 27] and policy-adaptation

[2, 10, 26] constraints. Existing studies on policy-adaptation primarily penalize the number of

policy changes, i.e., the frequency of updates. Without the magnitude of change, it is not completely

possibly to quantify the operational cost of change actions in practical defense settings. In contrast,

our formulation models the amount of change in the executed defense action and quantifies the

magnitude of consecutive policy adjustments. This distinction allows us to model reconfiguration

overhead in a more realistic way. Moreover, previous work does not consider the joint effect of

resource-budget and switching-cost constraints on adaptive defense policies. Our formulation

unifies these elements and provides the first theoretical regret guarantees for RL in this setting.

Overall, our study introduces a queueing-theoretic perspective that explicitly models the time-

varying and heavy-tailed nature of vulnerability backlogs. By validating the model on real data

and integrating it with adaptive control, we provide a quantitative framework for analyzing

dynamic attack surfaces and defense resource allocation. Using the framework, we provide an RL-

based systematic approach to allocating constrained defensive resources to achieve a significantly

improved attack surface dynamics, with the variations in the budget directly taken into account.

, Vol. 1, No. 1, Article . Publication date: January 2026.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

AQueueing-Theoretic Framework for Dynamic Attack Surfaces: Data-Integrated Risk Analysis and Adaptive Defense 5

vulnerabilities

𝑉(𝑡)

successful
defense

successful
exploit

𝑁d(t)

𝑁𝑙(t)𝑁(t)

Fig. 1. Attack surface modeled as a queueing system. Vulnerabilities arrive via 𝑉 (𝑡) and depart through
competing defense (patching) and exploit processes.

3 System Model
Consider a single component in an organization’s IT stack, such as an authentication service, file

server, or endpoint device. Each component maintains an attack surface, which represents the set
of currently active vulnerabilities. For example, in a software release, the attack surface can

be defined as the set of unpatched bugs (the definition can also be extended depending on the

dependencies to the other systems). In a larger ecosystem, like an enterprise, the IT/OT environment

will have a complex attack surface, composed of the combination of the attack surfaces of each

component in the system. The overall attack surface will exhibit an interplay across the network of

components, and its size naturally reflects how many vulnerabilities remain exposed at a given time.

In this paper, to build the initial foundation, we focus on a single subsystem or component. The

single-component model can be naturally extended to multi-component or multi-organizational

settings; we briefly discuss such extensions in Section 9.

The size of the associated attack surface at time 𝑡 is represented by the stochastic process 𝑁 (𝑡),
which we model as the number of jobs in a queue. Here, arrivals correspond to the appearance

of new vulnerabilities, and services represent their removal through patching or exploitation
1
.

Let 𝑉 (𝑡) denote the arrival process of vulnerabilities, and 𝑁𝑑 (𝑡) and 𝑁𝑙 (𝑡) denote the cumulative

numbers of defended and exploited vulnerabilities up to time 𝑡 , respectively, as shown in Fig. 1.

The discrete-time evolution of the attack surface size is given by

𝑁 (𝑡 + 1) =
{
𝑁 (𝑡) +𝑉 (𝑡) − [𝑁𝑑 (𝑡) + 𝑁𝑙 (𝑡)]

}+
, (1)

where {·}+ = max{·, 0}. Modeling the attack surface as a queue makes explicit the role of backlog:

vulnerabilities accumulate when arrival rates exceed patching capacity, and shrink only when

defenses can keep up. This recursion embodies the key intuition: new vulnerabilities enlarge the

attack surface, while patching and exploitation act as concurrent removal mechanisms. As shown

later in our empirical analysis (Section 6), both the arrival and lifetime processes exhibit burstiness,

heavy-tailed persistence, and non-stationarity.

Each vulnerability is subjected to a race condition between defensive and offensive actions. Let

𝐷𝑑 and 𝐷𝑙 denote random variables representing the defense time and exploit time, respectively.

For each active vulnerability,

𝐷𝑠 = min{𝐷𝑑 , 𝐷𝑙 }, (2)

determines its completion time, and the winner of the race 𝑠 = arg min{𝐷𝑑 , 𝐷𝑙 } increments the

corresponding counter 𝑁𝑠 (𝑡). For instance, if 𝐷𝑑 = 10
−2

and 𝐷𝑙 = 10
−3

for a given vulnerability,

the attacker acts ten times faster, leading to an exploit departure. This race captures the operational

reality that a vulnerability remains exposed until either it is patched or it is exploited.

We define 𝜇𝑑 (𝑡) and 𝜇𝑙 (𝑡) as the instantaneous total mean service rates for the defense and

exploitation processes, respectively. These rates quantify how quickly vulnerabilities are removed,

either by defenders or attackers, at time 𝑡 . Both sidesmay act onmultiple vulnerabilities concurrently

1
Removal of a job upon exploitation is optional in the model. One may assume that a vulnerability can be exploited multiple

times, before it is removed/patched from the surface queue.

, Vol. 1, No. 1, Article . Publication date: January 2026.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal

with the defensive limitation of simultaneous processing across𝑚 parallel servers under a fixed

total capacity 𝑏. In practice, defensive prioritization or limited concurrency can be modeled by

reducing𝑚 or adjusting per-server service rates. Here, 𝑏 denotes the organization’s defense budget,

interpreted as the maximum aggregate patching effort that can be sustained at any time. Hence,

𝜇𝑑 (𝑡) ≤ 𝑏. (3)

These characteristics motivate the adoption of a general 𝐺/𝐺/𝑚–𝑏 model rather than simpler

memoryless abstractions. Note that in Kendall’s notation, the standard 𝐺/𝐺/𝑚/𝑘 framework [6]

uses 𝑘 to denote the maximum number of jobs allowed in the system (i.e., a queue-length capacity

constraint). In contrast, our𝐺/𝐺/𝑚 −𝑏 notation utilizes𝑚 to denote the number of parallel servers

and 𝑏 to represent the aggregate capacity constraint imposed on the total service rate, effectively

modeling resource-limited defense operations. This general model is necessary to capture bursty

arrivals, heavy-tailed patching times, and hard capacity limits, which are not represented by

memoryless queueing models.

Unlike classical queueing models with independent service rates, both 𝜇𝑑 (𝑡) and 𝜇𝑙 (𝑡) may

depend on the current attack surface size 𝑁 (𝑡). As 𝑁 (𝑡) grows, defenders must divide limited

resources across more vulnerabilities, while attackers benefit from the expanded surface. This

coupling creates a feedback effect: when the number of active vulnerabilities increases, the same

defense capacity must be shared across more items, slowing down patching on each vulnerability,

while attackers face more exposed targets and thus have more opportunities to succeed. For instance,

𝜇𝑑 (𝑡) may decrease inversely with 𝑁 (𝑡), while 𝜇𝑙 (𝑡) increases proportionally to 𝑁 (𝑡), reflecting
the asymmetric scalability of attack versus defense. The interplay between these processes governs

the temporal evolution of the attack surface.

Variations of the Model: Throughout this paper, we consider several specializations derived from
our model:

• Temporal variation analysis: We use the limiting case 𝑀/𝐺/∞, which isolates temporal

effects such as heavy-tailed persistence and LRD without capacity constraints, to build

a theorem on how the heavy-tailed nature of the arrival and service processes affect the

attack surface variations.

• Data integration: In Section 6, the model is instantiated as 𝐺/𝐺/𝑚–𝑏 in its full generality

to capture bounded defense capacity and bursty vulnerability arrivals observed in the ARVO

dataset.

• Dynamic defense design and optimization: In Section 8, we use the𝐺/𝐺/1−𝑏 variation

to build the RL framework, where a single effective defense rate 𝜇𝑑 (𝑡) is adaptively controlled
under resource and switching constraints.

4 Problem Formulation
Building on the stochastic queueing model above, we now formulate the adaptive defense problem.

The objective is to allocate limited defense resources over time to minimize long-term exposure

and breach costs, while accounting for reconfiguration (switching) overhead.

At each time step 𝑡 , the defender selects a defense (patching) rate 𝜇𝑑 (𝑡) subject to the resource-

budget constraint 𝜇𝑑 (𝑡) ≤ 𝑏, while the effective exploitation rate 𝜇𝑙 (𝑡) evolves according to the

coupled arrival–service dynamics defined earlier. The resulting queue length 𝑁 (𝑡) captures the
number of active vulnerabilities and thus represents the instantaneous attack surface size. The
control task is to design a policy 𝜋 = {𝜇𝑑 (𝑡)}𝑇𝑡=1

that balances: (i) risk reduction through faster

patching, (ii) efficiency in total resource use, and (iii) stability against frequent reallocations.

We study two core problems that together form the foundation of our framework. The first

focuses on data-driven model inference and empirical validation, while the second develops an

, Vol. 1, No. 1, Article . Publication date: January 2026.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

AQueueing-Theoretic Framework for Dynamic Attack Surfaces: Data-Integrated Risk Analysis and Adaptive Defense 7

adaptive control policy for dynamic defense allocation. Each problem highlights a distinct analytical

or algorithmic component of the overall approach:

(P1) Data-Driven Characterization and Model Validation.
Given a set of event-level vulnerability data containing discovery and patch timestamps,

we aim to find the optimal parameters 𝜃 ∗ that minimize the statistical distance between

the empirical queue-length distribution (QLD), denoted by 𝑃 , and the simulated QLD, 𝑃 (𝜃),
generated by the candidate model. Formally, we define:

min

𝜃 ∈Θ
𝑑 (𝑃, 𝑃 (𝜃)) (4)

where 𝑑 (·, ·) is a divergence metric, specifically the Kullback-Leibler (KL) divergence in

our implementation. Θ is the parameter space for the 𝐺/𝐺/𝑚 − 𝑏 queueing model, where

𝜃 = {𝑚,𝑏, 𝐹𝐼𝐴, 𝐹𝑆𝑇 } includes the number of servers𝑚, total capacity 𝑏, and the parametric

distributions for inter-arrival (IA) and service times (ST).

Solving (P1) yields a segmented and validated model that captures the non-stationary

and heavy-tailed behavior of real-world vulnerability dynamics, providing the empirical

foundation for the adaptive defense control in (P2).

(P2) Learning-Based Adaptive Defense. This problem aims to develop a learning policy that

adaptively controls 𝜇𝑑 (𝑡) to minimize cumulative cost, i.e.,

min

{ ®𝜇𝑑 (1:𝑇) }

𝑇∑︁
𝑡=1

E
[
𝐶 (®𝑁𝑙 (𝑡)) + ∥ ®𝜇𝑑 (𝑡)∥1

+ 𝑔(∥ ®𝜇𝑑 (𝑡) − ®𝜇𝑑 (𝑡 − 1)∥∞)
]

(5)

sub.to: ®𝜇𝑑 (𝑡) ≤ 𝑏, 𝑡 = 1, . . . ,𝑇 ,

where ∥ · ∥𝑚 represents the ℓ𝑚 norm. The expectation reflects stochastic variability in attack

arrivals and patching delays. The first term 𝐶 (®𝑁𝑙 (𝑡)) penalizes exploit success proportional
to the instantaneous attack surface size, the second term ∥ ®𝜇𝑑 (𝑡)∥1 captures cumulative

resource use, and the third term 𝑔(·) models the switching cost for defense reconfiguration.

Note that in contrast to abstract policy-adaptation cost in existing work, this switching cost

is proportional to the magnitude of change in executed actions. The ℓ1 norm in the second

term captures the total defense effort expended over time, corresponding to cumulative

patching resources. In contrast, the ℓ∞ norm in the third term measures the largest change in

defense rate between consecutive time steps, reflecting the operational cost of reconfiguring

defense actions rather than the frequency of policy updates.

Before introducing adaptive defense strategies, we first analyze a few simple scenarios under

basic static allocation case to build some intuition on attack surface dynamics.

5 Illustrative Examples: Static Resource Allocation
We begin with a simple baseline that assumes a fixed defense allocation. This example is not
intended to represent a realistic situation, but rather to build intuition about how defense capacity

and vulnerability arrivals interact in a queueing system. In this example, we assume memoryless

arrivals and departures from our queue. These insights will help us better interpret the results in

the later sections, where we relax the memoryless assumption.

5.1 M/M/∞ Abstraction
The memoryless nature of the arrival and service processes with the M/M/∞ queue removes

temporal correlations and capacity interactions, allowing us to focus on how vulnerability arrivals

, Vol. 1, No. 1, Article . Publication date: January 2026.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal

0 20 40 60 80 100
normalized attack surface (percentage)

0

0.02

0.04

0.06

0.08

0.1

P
ro

ba
bi

lit
y

defense rate=100%

defense rate = 25%

defense rate = 10%

Fig. 2. Probability mass function for the size of the
attack surface for different defense rates. Surface size
is scaled 0–100% for visual interpretation.

0 20 40 60 80 100
normalized attack surface

0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

No AI use on the
defense.

Surface distribution
virtually identical with the same

AI scaling factor on defense
and attack

Fig. 3. Probability mass function for the size of
the attack surface with AI usage. Distribution
remains identical under symmetric AI scaling
while a major degradation is observed with no
AI use on the offense.

and fixed defense capacity jointly determine attack surface size and exploitation rates. The state of

the associated M/M/∞ system can be represented as a Markov chain with countable state-space.

As described in Section 3, in our analyses we assume that organizations have fixed amount of

cyber resources and allocate the full amount without a variation from one episode to another. In

particular, the rate of the successful defense process 𝜇𝑑 = 𝛼𝜆 remains constant and thus independent

of 𝑁 (𝑡) where 𝜆 is the arrival rate for𝑉 (𝑡), the (stationary) vulnerability process, and 𝛼 is a constant

such that 𝛼𝜆 ≤ 𝑏. Here, 𝜇𝑑 denotes the total defense rate. The variable 𝛼 signifies the intensity

of the defense. As an example, if 𝛼 = 1, we say the defense rate is 100% or if 𝛼 = 0.5, we say the

defense rate is 50%.

On the attacker side, we assume the rate of the successful exploitation process grows proportional

to 𝑁 (𝑡) as a larger number of active vulnerabilities attracts more attack attempts targeting the

exposed surface, growing proportional to the attack surface size. Hence, 𝜇𝑙 (𝑡) = 𝛽𝜆𝑁 (𝑡), where 𝛽
is a constant denoting the intensity of attacks on the organization.

In Fig. 2, we illustrate the probability mass function (PMF) of the state of the attack surface. Here,

we picked a constant and normalized the observed queue sizes with respect to that constant. As a

result, the queue size is denoted as a “percentage” in the figure, rather than an absolute value. We

took the vulnerability arrival rate as 𝜆 = 100 per unit time and 𝛽 = 0.001. We have plotted three

different PMFs for different values of defense rate: 𝛼 = 100%, 25%, and 10%.

The curve with the full (100%) defense rate leads to a small expected surface size of E [𝑁 (𝑡)] =
13.2% and a time-averaged breach rate of lim𝑡→∞

1

𝑡
E [𝑁𝑙 (𝑡)] = 6.79 breaches per unit time, much

lower than the time-averaged defense rate, which happens to be

lim

𝑡→∞
1

𝑡
E [𝑁𝑑 (𝑡)] = 𝜆 − lim

𝑡→∞
1

𝑡
E [𝑁𝑙 (𝑡)] = 93.21.

As the defense rate decreases, the expected surface size and exploitation rate increase sharply. At

𝛼 = 50%, the expected surface size grows to 52.1% with a substantial breach rate of 69.69. This

means, there are more than twice as many breaches as there are successful defenses. Breach rate

grows even further to 84.16% as we further decrease the defense rate to 10%. The interesting thing

here is that, the expected attack surface size in this final situation remains at 57.44, very close to

the case with 𝛼 = 0.25, despite a significant decrease to 𝛼 = 0.1.

, Vol. 1, No. 1, Article . Publication date: January 2026.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

AQueueing-Theoretic Framework for Dynamic Attack Surfaces: Data-Integrated Risk Analysis and Adaptive Defense 9

The above situation can be explained by the fact that, as the surface size grows, much of the

departures are caused by a breach rather than a successful patch. As a result, the average surface

size remains relatively static, however the instantaneous fluctuations above the mean are quickly

exploited by the growing set of attackers. As a result, even though one may think that the attack

surface is not much higher, the breach rate grows at a much higher pace with reduced defense rate.

Our initial results demonstrate a phase-transition phenomenon in the attack surface size

distribution. Once the defense rate goes below a certain point, the surface distribution shifts sharply

and abruptly to the right. Further reducing the defense rate beyond that shifting point does not
change the disribution considerably. This observation underlines the importance of keeping a

disciplined security posture for an organization and the resources should be allocated to have a rate

at least identical to (if not much higher than) the rate of growth in vulnerabilities. For example, if the

defense rate is set to 𝛼 = 200%, the expected attack surface size remains below a single vulnerability,
while the average breach rate is merely 0.29 per unit time! Our results show that a small increase

in resources can substantially improve protection against breaches, whereas insufficient resource

allocation leads to sharply degraded security performance.

5.2 AI-driven Dynamics
We continue the illustrative analysis with the memoryless model to study how AI-driven accelera-

tion of vulnerability discovery and response affects attack-surface dynamics, captured through a

simple rate-scaling abstraction. Let us introduce an AI amplification factor that scales the arrival
and service rates and study its effect under symmetric and asymmetric amplification of attack and

defense capabilities. We scale the vulnerability arrival rate and the exploitation rate by the same

factor 𝑎, so 𝜆 → 𝑎𝜆 and 𝜇𝑙 → 𝑎𝜇𝑙 . In the second part, we will scale the defense rate 𝜇𝑑 with the

same rate, to evaluate the impact of the use of AI on the defensive side, as well as the attackers’

side.

In this example, we use the same amplification factor across the three pillars of the model.

Our intention here is to illustrate the drastic shift in temporal dynamics even when there is no

change in the spatial dynamics of the surface. Also, we show the dynamics under asymmetry in AI

amplification between attack and defense, where the asymmetry is in the favor of the attackers.

Similar to Section 5.1, we use 𝜇𝑑 (𝑡) = 𝛼𝜆, where 𝛼 is the defense rate and 𝜇𝑙 (𝑡) = 𝛽𝜆𝑁 (𝑡). We

provide the probability mass function for the attack surface for three different situations:

(1) No AI is used (i.e., 𝑎 = 1) on either the offense or the defense. Here, we choose the vulnera-

bility arrival rate 𝜆 = 5, defense rate 𝛼 = 50%, and the attack rate 𝛽 = 0.005;

(2) AI used on the attack and defense with an AI amplification factor of 𝑎 = 4 on both sides.

Here, the 𝜆 = 20, is amplified by 𝑎 compared to the previous case and both the attack and

defense resources are also benefiting the same rate of amplification.

(3) AI is used on the attack side only. As a result, the overall defense resources remain at 2.5

units as in the original situation, while the vulnerability arrival rate and the attack rate

scale with the AI amplification factor 𝑎 = 4.

In Fig. 3, we illustrate the attack surface distributions for Cases (1-3) above. For Case 1 (no AI), the

expected surface size remains at E [𝑁 (𝑡)] = 42.48% at a defense rate of 2.5 patches per unit time

while the exploit rate is 2.06 exploits per unit time.

Notably, when AI-driven acceleration is applied symmetrically to both attack and defense, the

steady-state distribution of the attack surface remains unchanged, even though vulnerabilities

arrive and are processed at a faster rate. However, all event rates scale with the amplification factor.

In particular, the exploitation rate increases from 2.06 to 8.24 exploits per unit time, i.e., by a factor of 𝑎.
Thus, while the shape of the attack-surface distribution is preserved, successful exploits occur more

, Vol. 1, No. 1, Article . Publication date: January 2026.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal

frequently due to the accelerated underlying dynamics. This observation highlights that symmetric

acceleration primarily compresses the time scale of events rather than altering the distribution

itself, and suggests that simply matching attack acceleration with defensive acceleration may be

insufficient to reduce exploitation frequency.

Lastly, if the defense does not use AI, while the AI is used on the attack, the expected surface

size substantially increases to 80.54%. The exploitation rate is scaled up to 13.23 per unit time,

demonstrating a super-linear increase with AI amplification factor. This observation shows that

an asymmetry in the AI usage in the favor of the attack side leads to a disproportionately higher

increase in the rate of successful exploits. This scenario illustrates how asymmetric acceleration on

the attack side can significantly worsen backlog and exploit rates under fixed defense capacity.

The illustrative examples above demonstrate how fixed and AI-amplified defense rates influence

the steady-state behavior of the attack surface. We now turn to real-world data to assess whether

these modeled dynamics hold in practice. In the next section, we integrate empirical vulnerability

data from the open-source software repositories and validate our queueing-theoretic framework

against observed attack surface behavior.

6 Data Integration: Software Supply Chain
In this section, we evaluate the suitability of our queueing-based risk model using empirical

vulnerability data. Our goal is to assess how accurately the model captures the temporal dynamics

and structural properties of attack surface evolution in operational settings. If such validation fails,

the utility of the model in guiding practical defense strategies would be limited. Once the fit is

validated, the model can be used subsequently in defense and mitigation approaches.

To that end, we implement our framework in the use case of open-source software supply chain. In

our implementation, we use the ARVO dataset [19], which aggregates more than 4,000 reproducible

vulnerabilities from Google’s OSS-Fuzz infrastructure, spanning hundreds of large-scale open-

source C/C++ projects. Each record includes rich metadata such as report and fix timestamps,

sanitizer type (ASan, MSan, UBSan), crash category (for example, heap buffer overflow or use

after free), and severity level (low, medium, or high). This information enables precise event-level

tracking of vulnerability discovery and patching. The dataset’s granularity makes it particularly

well suited for queueing-based modeling: vulnerability disclosures correspond to arrivals, while
patch completions represent service completions.

Using this dataset, we first analyze the empirical dynamics of vulnerability arrival and departures,

demonstrating that our queueing-theoretic framework provides an accurate and interpretable

representation of real-world attack surface evolution. We then show that the queueing model

faithfully reproduces the observed queue size dynamics, confirming its validity as a realistic

abstraction of complex software ecosystems.We further characterize the heavy-tailed nature of both

arrival and service processes, which reveals a systemic bottleneck that slows patch deployment and

motivate the need for adaptive, data-driven defense strategies. In the next section, we build on these

findings and propose a RL–based dynamic defense allocation algorithm that optimally distributes

defensive effort to manage the attack surface size under resource and switching constraints.

6.1 Validating the ProposedQueueing Model on the ARVO Dataset
The following steps outline our complete empirical pipeline for constructing, segmenting, and

validating the queueing model on the ARVO dataset, thereby linking theoretical formulation with

real-world vulnerability dynamics.

Step 1. Queue reconstruction and exploratory analysis: We first align vulnerability dis-

covery and patching timestamps to reconstruct the time series of open vulnerabilities 𝑁 (𝑡). The
ARVO dataset used here provides exceptionally high resolution, tracking over 4, 410 vulnerabilities

, Vol. 1, No. 1, Article . Publication date: January 2026.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

AQueueing-Theoretic Framework for Dynamic Attack Surfaces: Data-Integrated Risk Analysis and Adaptive Defense 11

2017 2018 2019 2020 2021 2022 2023 2024
Date

0

50

100

150

200

250

T
ot

al
 V

ul
ne

ra
bi

lit
ie

s

Fig. 4. Temporal evolution of the attack surface size,
𝑁 (𝑡), in the ARVO dataset, showing bursty discovery,
delayed patching, and non-stationary behavior.

0 5 10 15 20
Number of GMM Components

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

K
L

D
iv

er
ge

nc
e

Fig. 5. KL divergence versus the number of Gaussian
mixture components. Fit quality improves rapidly
up to about ten components, after which additional
components yield diminishing returns.

across 260 unique open-source projects from December 2016 to May 2024. Each record includes

exact event-level timestamps for vulnerability discovery and patching, alongside critical metadata

such as severity (including 1, 150 High-severity cases), detection sanitizer (e.g., asan, msan), and

specific crash types like Heap-buffer-overflow and Use-of-uninitialized-value. Figure 4 shows clear

expansion and contraction phases, with bursty arrivals followed by delayed patching, confirming

non-stationarity due to capacity limits in patching throughput.

Step 2. Segmentation via Gaussian mixture modeling: To capture these evolving patterns,

we employed a segmented modeling approach. Segments are defined as mutually exclusive, closed

intervals [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑] that collectively partition the entire observation period.Within these intervals,

the arrivals and departures are statistically analyzed in isolation from the rest of the dataset to

uncover localized distribution shifts and non-stationarities in the time series. A Gaussian mixture

model (GMM) fitted to the empirical QLD identified roughly ten quasi-stationary segments, each

representing a distinct operational regime. The number of mixture components was selected based

on the KL divergence elbow curve shown in Figure 5, which indicates that model fit improves sharply

up to around ten components and then saturates. This segmentation enables locally stationary

modeling of non-stationary dynamics.

Step 3. Segment-wise parameter estimation: Within each segment, we estimated inter-

arrival and service distributions and calibrated the queue parameters (𝑚,𝑏) of a 𝐺/𝐺/𝑚–𝑏 model

by minimizing the KL divergence between empirical and simulated QLDs. In this segmented setting,

the parameter 𝑏 represents the mean available defensive resource rather than the maximum capacity

used in the next section, reflecting the average effective throughput observed in each operational

regime. The resulting segmented models accurately reproduced the multimodal and time-varying

dynamics of the attack surface, confirming that segmentation is essential for representing the

non-stationary evolution observed in ARVO.

Step 4. Statistical characterization of IA and ST: After segmentation, we analyzed the sto-

chastic structure within each stationary window to identify appropriate parametric distributions

for inter-arrival (𝐹𝐼𝐴) and service times (𝐹𝑆𝑇). We evaluated a wide range of candidate distribu-

tions using five divergence metrics (KL, TVD, L2, JSD, and Wasserstein). Heavy-tailed mixtures

consistently outperformed non-heavy-tailed models, such as the exponential distribution, which

underestimated tail mass and failed to capture persistence effects. As illustrated in Figure 6, for the

first segment (weeks 0–64), the best-fitting non-heavy-tailed model (exponential) yielded signifi-

cantly higher KL divergences of 1.31 for IA and 1.34 for ST. In contrast, the heavy-tailed loglogistic

, Vol. 1, No. 1, Article . Publication date: January 2026.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal

0 10 20 30
Time (days)

10-10

10-5

100
P

D
F

IA Empirical
IA Loglogistic-gp (KL: 0.771)
IA Exponential (KL: 1.31)

0 200 400 600
Time (days)

10-8

10-4

100

P
D

F

ST Empirical
ST Gamma-InverseGaussian (KL: 0.422)
ST Exponential (KL: 1.34)

Fig. 6. IA and ST distributions for Component 1 (weeks 0–64). Loglogistic-general Pareto fits IA (KL ≈ 0.77);
Gamma–InverseGaussian fits ST (KL ≈ 0.42).

and Gamma–InverseGaussian distributions achieved much lower KL divergences of approximately

0.77 and 0.42, respectively. These results confirm that both vulnerability discovery and patching

processes are fundamentally heavy-tailed, justifying our use of more complex 𝐺/𝐺/𝑚 abstractions

to capture real-world long-lived exposure and temporal clustering.

Step 5. Segment-wise queue model fitting and validation: Finally, we validate that the

segmented 𝐺/𝐺/𝑚–𝑏 model accurately reproduces the empirical QLD observed in ARVO. Figure 7

compares the empirical QLD with the segmented, bootstrap, and ten-component GMM fits. In the

bootstrap model, samples are drawn directly from the empirical data rather than from any fitted

distribution, providing a nonparametric characterization. As shown, the segmented 𝐺/𝐺/𝑚–𝑏

model reproduces the empirical QLD with high fidelity, accurately capturing both the multimodal

structure and the heavy-tailed persistence observed in practice. Quantitatively, the KL divergence

between the empirical and simulated distributions is 0.1072, comparable to the nonparametric

bootstrap (0.1058).
Across segments, the number of servers𝑚 remains relatively stable (220–250), while the effec-

tive resource capacity 𝑏 varies widely (30–270), reflecting changes in patching throughput and

organizational defense posture. Together, these results confirm that empirically calibrated queueing
abstractions replicate real-world attack surface dynamics with sub–0.11 KL divergence, demonstrating
near-empirical precision.

6.2 Temporal Characterization of Vulnerabilities of Software Releases
The empirical fits above confirm that vulnerability service times follow a heavy-tailed distribution,

with decay exponents (𝑢) in the range 2 < 𝑢 < 3. Consequently, vulnerabilities tend to remain

active on the attack surface for extended periods, depending on the underlying defense and exploit

dynamics. Our results are corroborated by prior measurements [15] on specific networks, in which

similar observations were made that the time a vulnerability remains exploitable follows a heavy-

tailed law with a tail in 𝐷𝑠 that decays slowly in a non-exponential fashion. Building on this

empirical evidence, we formally show that when the vulnerability patching process exhibits such

heavy-tailed behavior, the attack surface size 𝑁 (𝑡) develops long-range dependence (LRD), even
if the vulnerability arrival process itself is memoryless.

More specifically, let 𝑉 (𝑡) be memoryless with an arrival rate 𝜆 (a homogenous Poisson process

for simplicity in this section). Also, we define 𝐹 (𝑡) as the cumulative distribution function (cdf) of

𝐷𝑠 , i.e., the service time
2
. A heavy-tailed distribution is characterized by a decay in 1 − 𝐹 (𝑡), that is

slower than 𝑡−𝑢 for 2 < 𝑢 < 3.

2
For a vulnerability, we have that 𝐷𝑠 = min(𝐷𝑑 , 𝐷𝑒) .

, Vol. 1, No. 1, Article . Publication date: January 2026.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

AQueueing-Theoretic Framework for Dynamic Attack Surfaces: Data-Integrated Risk Analysis and Adaptive Defense 13

0 20 40 60 80 100 120 140 160 180 200
Queue Length

0

0.005

0.01

0.015

0.02

0.025

0.03

P
ro

ba
bi

lit
y

Segments (weeks) and (m,b):
Comp 1: [0 64]; m=246 b=131.9
Comp 2: [240 336]; m=250 b=272.9
Comp 3: [128 144]; m=221 b=250.7
Comp 4: [80 96]; m=35 b=208.1
Comp 5: [336 352]; m=240 b=53.6
Comp 6: [144 160]; m=245 b=123.7
Comp 7: [64 80]; m=250 b=77.4
Comp 8: [352 383]; m=231 b=30.9
Comp 9: [96 128]; m=235 b=70.3
Comp 10: [160 240]; m=109 b=184.0

Empirical QLD
Simulated (KL=0.1072)
Bootstrap (KL=0.1058)
GMM Fit 10 Comp (KL=0.05997)

Fig. 7. Final integrated model: empirical QLD compared with segmented, bootstrap, and 10-component GMM
fits. In the segmented 𝐺/𝐺/𝑚–𝑏 model, 𝑏 denotes the mean available defensive resource rather than the
maximum capacity used in the global formulation.

Theorem 1. For memoryless𝑉 (𝑡) and heavy-tailed 𝐹 (𝑡), process 𝑁 (𝑡) is stationary and it exhibits

long-range dependence.

Proof. See Appendix A for the complete proof. Here, we provide a sketch: our derivation begins

by establishing the autocovariance function of the number of customers in an M/G/∞ queue. We

prove that 𝑁 (𝑡) is wide-sense stationary and for heavy-tailed 𝐹 (𝑠), the autocovariance function
decays slower than (𝜏 − 𝑡)2

, leading to a long-range dependent attack surface. □

LRD of the surface size implies that the impact of a vulnerability may last for an extended
amount of time. The size of the attack surface is not ergodic, making it extremely difficult for

the organization to control the cyber risk. That is, two different realizations of the process may

give completely different empirical statistics in terms of the attack surface dynamics. Therefore,

based on our analytical observation, an organization that regularly performs penetration testing to

identify, patch, and mitigate vulnerabilities can avoid long tails on the defense side, eliminating the

LRD and its negative side effects. Organizations should set up a security practice to ensure that the

vulnerability identification process occurs at regular (preferably deterministic) intervals.

Given that an organization has control over the distribution of inter-defense times, we next

develop a RL–based dynamic defense allocation algorithm to regulate the effective service times.

7 A Near-Optimal RL Algorithm for Adaptive Defense
Building on the model (Sec. 3) and the analytical insights into static allocation, temporal dependence,

and AI-driven dynamics (Secs. 5 and 6), we now build a systematic approach to the dynamic defense

problem. To that end, we present a near-optimal RL algorithm for adaptively allocating constrained

resources to dynamic defense, while accounting for switching costs. This learning-based approach

is needed because the arrival and service processes governing the attack surface are unknown and

may change over time. The RL agent represents an adaptive defender who episodically reallocates

limited patching or monitoring resources across a dynamic vulnerability queue. The transition

dynamics of the attack surface process are unknown. The policy switch for each episode corresponds
to an operational reconfiguration (e.g., retuning patching pipelines or reassigning response teams),

hence incurring measurable overhead modeled as a switching cost.

, Vol. 1, No. 1, Article . Publication date: January 2026.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal

7.1 Problem Setting and RL Framework
Specifically, this section provides the solution to the constrained optimization problem stated in (5),

where the defender seeks the optimal dynamic defense policy under uncertainty.

Setting: We apply the episodic Markov decision process (MDP) to model the dynamic defending

problem. As assumed in standard episodic MDPs, we consider 𝐻 steps of interaction between the

defender and the attack surface in each episode
3 𝑡 = 1, . . . ,𝑇 . At each step ℎ = 1, ..., 𝐻 , based on the

observed state 𝑁ℎ (𝑡) of the system, the defender can take a defense action 𝜇ℎ
𝑑
(𝑡) according to a

policy 𝜋𝑡 : N → 𝝁𝑑 , where N = {1, . . . , 𝑁 } is the system state space and 𝝁𝑑 = {𝜇𝑑 } is the defense
action space. The defense must satisfy the resource-budget constraint 𝜇ℎ

𝑑
(𝑡) ≤ 𝑏 for all ℎ and 𝑡 .

After the defense action, the state evolves according to Eq. (1). The episodic formulation reflects

practical operation cycles, such as periodic defense planning or monitoring windows, during which

defense rates are adjusted based on observed backlog.

Given any state𝑁ℎ
at stepℎ, the defense action given by the current policy 𝜋𝑡 (·) could be different

from that given by the policy 𝜋𝑡−1 (·) in last episode, in which case there will be a switching cost

Sℎ (𝑡, 𝑁ℎ) ≜ 𝑤 ·
���𝜋𝑡 (𝑁ℎ) − 𝜋𝑡−1(𝑁ℎ)

���
penalizing the change in defense across episodes, e.g., for parameter retuning, budget reallocation,

and recontracting. This cost captures the operational overhead of changing defense intensity,

rather than merely how often changes occur. Therefore, the goal is to find a desirable algorithm 𝜋

that optimizes the expected cumulative penalty and defense cost over all steps and time-slots by

executing the policies 𝜋1:𝑇 , i.e., min𝜋1:𝑇

∑𝑇
𝑡=1

[V𝜋𝑡 + S𝜋𝑡]. Here, the V-value function is defined to

be

V𝜋𝑡 ≜ E
[∑︁𝐻

ℎ=1

[
𝐶

(
𝑁ℎ
𝑙
(𝑡)

)
+ 𝜇ℎ

𝑑
(𝑡)

]]
,

where the expectation is taken with respect to the randomness of the state transition (1) and the

race condition, and with a slight abuse of notation, the total switching cost is defined to be

S𝜋𝑡 ≜ E
[∑︁𝐻

ℎ=1

∑︁
𝑁ℎ∈N

Sℎ (𝑡, 𝑁ℎ)
]
. (6)

Performance Metric: We use the standard regret as the metric to evaluate the performance of RL

algorithm 𝜋 , which is defined to be

Reg(𝑇) ≜
∑︁𝑇

𝑡=1

[V𝜋𝑡 + S𝜋𝑡 −V∗] , (7)

i.e., the difference between the expected cumulative cost of the RL algorithm 𝜋 and the expected

cumulative cost V∗
of the optimal policy 𝜋∗ = arg min{𝜋 :𝜋 (𝑁ℎ)≤𝑏,∀ℎ,𝑁ℎ } V𝜋

. Note that the optimal

policy knows all problem parameters and does not change the policy. Thus, there is no switching cost

and we drop the round index 𝑡 . Intuitively, this regret measures the cumulative excess vulnerability

exposure incurred by the learning defender relative to an omniscient optimal defense strategy.

Novelties and Challenges: To our knowledge, this work is the first to analyze RL with switching

costs that quantify the magnitude of policy change rather than merely the frequency of switching.

Specifically, the term Sℎ (𝑡, 𝑁ℎ) captures the absolute difference between consecutive defense

actions, measuring how much the policy changes over time. In contrast, existing RL formulations

penalize only whether 𝜋𝑡 differs from 𝜋𝑡−1, without accounting for the extent of change [2, 10, 26].

Moreover, we address the new challenge arising from the simultaneous presence of switching costs

and resource-budget constraints, whose coexistence has not been studied in prior RL literature.

3
Compared to the fixed allocation in traditional settings, this is a finer-grained setting where the defense action is taken in

a more dynamic way.

, Vol. 1, No. 1, Article . Publication date: January 2026.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

AQueueing-Theoretic Framework for Dynamic Attack Surfaces: Data-Integrated Risk Analysis and Adaptive Defense 15

Algorithm 1 Dynamic Defense Under Resource Constraints and Switching Costs

1: Parameters: 𝜂 = 1

2𝐻 (𝐻+1) and 𝑐 > 0

2: Initialization: Q-value functions ˜Qℎ (𝑁, 𝜇𝑑) = 𝐻 and Qℎ (𝑁, 𝜇𝑑) = ˜Qℎ (𝑁, 𝜇𝑑), state-action
visitation counts Nℎ (𝑁, 𝜇𝑑) = 0, where 𝑁 represents the number of vulnerabilities in the

queue, and 𝜇𝑑 represents the defense action

3: for 𝑡 = 1 : 𝑇 do
4: for ℎ = 1 : 𝐻 do
5: Take defense action

𝜇ℎ
𝑑
(𝑡) = arg max{𝜇𝑑 } Q

ℎ (𝑁ℎ (𝑡), 𝜇𝑑)
6: Based on the arrivals of vulnerabilities and race condition, the queue state evolves to

𝑁ℎ+1(𝑡) according to Eq. (1)

7: Update the defense changing parameter

𝑘 =Nℎ (𝑁ℎ (𝑡), 𝜇ℎ
𝑑
(𝑡)) + 1

8: Update bonus B(𝑘) = 𝑐
√︁
𝐻 3/𝑘 for defense exploration

9: Update the estimate-
˜Q-value function according to Eq. (8).

10: Update the estimate-
˜V-value function

˜Vℎ (𝑁ℎ (𝑡)) = min

{
𝐻,max{𝜇𝑑 }

˜Qℎ (𝑁ℎ (𝑡), 𝜇𝑑)
}

11: if 𝑡 ∈ {𝑡𝑛}𝑛≥1 then
12: Update the belief-Q-value

Qℎ (𝑁ℎ (𝑡), ·) = ˜Qℎ (𝑁ℎ (𝑡), ·)
13: end if
14: end for
15: end for

7.2 Algorithm Design
Our algorithm maintains two Q-value estimates. One is updated continuously to learn from new

data, while the other is updated less frequently to determine defense actions and limit switching

costs, which is detailed in Algorithm 1. The algorithm outlines the core RL update under delayed

policy switching. The algorithm maintains an optimistic Q-estimate, updated periodically according

to a geometrically increasing triggering sequence to balance responsiveness and stability. From

a high-level point of view, we take the defense action according to an optimistic belief-Q-value
function. Specifically, at each step, our algorithm first updates an estimate-

˜Q-value function, which

represents the value of taking a certain action at a state (line 9). An action with larger estimate-
˜Q-

value function output is preferred. Intuitively, the belief-Q-value function should be updated more

frequently when the sample size is small (i.e., the uncertainty is large), and it should be updated

less and less frequently when the sample size becomes larger and larger. To achieve this, a delayed

belief-Q-value function is updated when it has not been updated sufficiently long and triggers

a switching threshold. Hence, to achieve effective defense with low switching costs, we need to

carefully construct an effective belief-Q-value function to guide the defense action and construct

an elegant triggering time sequence {𝑡𝑛}𝑛≥1 for updating the belief-Q-value function (lines 11-12),

as well as for changing defense actions. Operationally, this design avoids frequent reconfiguration

while still allowing rapid adaptation when uncertainty is high.

Specifically, in Line 7 of Algorithm 1, we first update the number of times the state 𝑁ℎ (𝑡) and
defense action 𝜇ℎ

𝑑
(𝑡) are visited simultaneously, which will generate the bonus term in Line 8.

This bonus term essentially captures the level of uncertainty after collecting 𝑘 samples, such

, Vol. 1, No. 1, Article . Publication date: January 2026.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal

that according to the concentration inequality (e.g., Hoeffding’s inequality), the estimate-
˜Q-value

function is an optimistic estimate of the optimal true Q-value with high probability. To guarantee

this, we update the estimate-
˜Q-value function as follows,

˜Qℎ (𝑁ℎ (𝑡), 𝜇ℎ
𝑑
(𝑡)) = (1 − 𝛼 (𝑡)) ˜Qℎ (𝑁ℎ (𝑡), 𝜇ℎ

𝑑
(𝑡))

+ 𝛼 (𝑡)
[
(𝐶 + 𝑏 −𝐶 (𝑁ℎ

𝑙
(𝑡)) + 𝜇ℎ

𝑑
(𝑡))/(𝐶 + 𝑏)

+ ˜Vℎ+1(𝑁ℎ+1 (𝑡)) + B(𝑘)
]
, (8)

where 𝐶 = sup{𝐶 (·)}. This estimate-
˜Q-value is an weighted average between the old estimate-

˜Q-value
˜Qℎ (𝑁ℎ (𝑡), 𝜇ℎ

𝑑
(𝑡)) (for exploiting the knowledge learned from historical samples) and the

newly learned knowledge from currently visited state-action pair[
(𝐶 + 𝑏 − (𝐶 (𝑁ℎ

𝑙
(𝑡)) + 𝜇ℎ

𝑑
(𝑡)))/(𝐶 + 𝑏)

]
(9)

+ ˜Vℎ+1(𝑁ℎ+1 (𝑡)),
together with a bonus term B(𝑘) (for encouraging exploration of potentially better defense strate-

gies).

Finally, lines 11 and 12 determine whether or not to change the belief-Q-value function that

will directly determine the defense action 𝜇𝑑 (𝑡). Let 𝜏 (𝑖) =
⌈
(1 + 𝜖)𝑖

⌉
for 𝑖 = 1, 2, ..., and define the

triggering time sequence as

{𝑡𝑛}𝑛≥1
= [1, 𝜏 (𝑖0)] ∪ {𝜏 (𝑖0 + 1) , 𝜏 (𝑖0 + 2) , . . .} , (10)

where 𝜖 and 𝑖0 =

⌈
log(10𝐻 2)
log(1+𝜂)

⌉
are hyper–parameters chosen by the algorithm. For all 𝑡 ∈ {1, 2, . . .},

𝜏last (𝑡) := max {𝑡𝑛 : 𝑡𝑛 ≤ 𝑡} and 𝛼 (𝑡) = 𝐻+1

𝐻+𝑡 . The triggering time sequence (10) allows policy switch

every time-slot at the beginning, and then the delay for policy switch keeps exponentially-increasing

after a certain amount 𝜏 (𝑖0) of samples has been collected. For example, the policy switches as

follows. Given state 𝑁ℎ (𝑡) at step ℎ, we take some particular defense 𝜇ℎ
𝑑
(𝑡) for time 𝑡 , and update

both the estimate-
˜Q-value and the belief-Q-value immediately. After the time-slot 𝜏 (𝑖0), we still

update
˜Q immediately. However, we only update Q when 𝑡 is in the triggering time sequence.

This exponentially delayed update schedule enables high responsiveness early on and stability as

uncertainty decreases, effectively balancing adaptation and switching cost.

7.3 Theoretical Regret Bound: Near-Optimality
We show that the proposed algorithm achieves near-optimal regret with high probability. In

particular, with high probability 1 − 𝑝 , the theoretical regret of our algorithm is upper-bounded by

𝑂̃ (
√
𝑇), which is optimal. Recall that the regret is defined to compare our RL performance with

the optimal policy, which is an oracle defender with full knowledge of system parameters and no

switching penalty.

Theorem 2. (Regret Upper-Bound) With high probability 1 − 𝑝 , 𝑝 ∈ (0, 1), the regret of

Algorithm 1 is upper-bounded by 𝑂̃

(√
𝐻 3𝐶4𝑏𝑇

)
for any horizon 𝑇 = Ω̃

(
𝐻 6𝐶2𝑏2

)
.

Proof. See Appendix B for the complete proof. Here, we provide a sketch. The proof follows

optimism-based analysis for episodic RL, with new developments to handle the delayed defense

switching and resource budgets. Let
˜Qℎ (𝑡) denote the estimate- ˜Q-value function, which is contin-

uously updated from new samples, and let Qℎ (𝑡) denote the belief-Q-value function, a stabilized
version used for policy decisions and updated only at triggering times {𝑡𝑛}𝑛≥1. The proof involves

the following key ideas.

, Vol. 1, No. 1, Article . Publication date: January 2026.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

AQueueing-Theoretic Framework for Dynamic Attack Surfaces: Data-Integrated Risk Analysis and Adaptive Defense 17

(i) Optimism and Concentration: Each ˜Qℎ (𝑡) update uses a step size 𝛼 (𝑡) = 𝐻+1

𝐻+𝑡 and an exploration

bonus B(𝑘) = 𝑐
√︁
𝐻 3

log(1/𝑝′)/𝑘 . By standard concentration arguments (e.g., Azuma–Hoeffding

inequality), with probability at least 1 − 𝑝′, the estimate satisfies

0 ≤ ˜Qℎ (𝑡) − Q∗,ℎ ≤ B(𝑘) = 𝑂̃

(√︃
𝐻 3

𝑘

)
,

uniformly over all (ℎ, 𝑁, 𝜇, 𝑡), where Q∗,ℎ
is the optimal Q value. This ensures optimism: the learned

Q-values upper bound the true optimal values within B(𝑘).
(ii) Regret Decomposition: Let 𝛿ℎ (𝑡) = 𝑉̃ℎ (𝑡) −𝑉 𝜋𝑡 ,ℎ

denote the instantaneous regret at step ℎ in

episode 𝑡 . Since the policy 𝜋𝑡 is derived from the most recently updated
˜Qℎ (𝑘 ′) at trigger 𝑘 ′≤𝑡 , we

decompose

𝛿ℎ (𝑡) ≤ |(Qℎ (𝑘 ′) − Q𝜋𝑡 ,ℎ) | + | ˜Qℎ (𝑘 ′) − Qℎ (𝑘 ′) |,
where the first term behaves as in standard optimistic RL, while the second term measures the

deviation caused by delayed updates.

(iii) Controlling the Delay via Triggering Sequence: Between two triggers,
˜Q evolves according

to small step sizes and bounded bonuses. Under the geometrically increasing triggering schedule

𝑡𝑛 = ⌈(1 + 𝜖)𝑛⌉, the cumulative deviation

∑
𝑡 | ˜Qℎ (𝑘 ′) − Q(ℎ𝑘 ′) | grows at most by a constant factor

1 + 𝑂 (1/𝐻) relative to non-delayed updates. Hence, the delay introduces only a multiplicative

𝑂 (1/𝐻) overhead.
(iv) Error Propagation over the Horizon: Summing the per-step inequalities and propagating value

errors through the horizon yields

𝑅ℎ ≤ (1 +𝑂 (1/𝐻))𝑅ℎ+1 + 𝑂̃ (
√
𝐻 3𝑇),

where 𝑅ℎ =
∑

𝑡 𝛿
ℎ (𝑡). Unrolling across ℎ = 1, . . . , 𝐻 gives

∑
ℎ 𝑅

ℎ = 𝑂̃ (
√
𝐻 3𝑇). Including bounded

per-step costs 𝐶 and feasible budget 𝑏 scales the bound to 𝑂̃ (
√
𝐻 3𝐶4𝑏𝑇).

(v) Switching Costs: The number of belief-Q-value updates, and hence policy changes, is logarith-

mic in time. Thus, the cumulative switching cost contributes at most 𝑂̃ (log𝑇) to regret, absorbed

by the main term.

Combining the above, the total regret then follows.

□
To the best of our knowledge, this is the first regret bound established for dynamic defense under

the coexistence of resource-budget constraints and switching costs for amount of changes.

8 Numerical Evaluation
We now evaluate the proposed framework through a series of numerical experiments that com-

bine model-based simulations and data-driven evaluations. These experiments evaluate how the

RL defense policy performs under both synthetic and real-world conditions, focusing on attack

surface size and exploitation rates. The analysis proceeds in three parts: (i) controlled model-based

simulations to verify core dynamics, (ii) trace-driven evaluation using the ARVO dataset, and (iii)

aggregate-budget simulations that examine RL reallocation under realistic resource constraints.

8.1 Model-based RL evaluation
We begin with controlled simulations based on the analytical model introduced in Section 4. These

simulations evaluate the RL defense policy in a simplified environment where all system parameters

are known. The results highlight two main effects: (i) the RL policy’s ability to reduce success-

ful exploits compared to fixed allocations, and (ii) its smoothing behavior under nonstationary

vulnerability arrivals.

, Vol. 1, No. 1, Article . Publication date: January 2026.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal

(a) Stochastic arrivals. (b) Adversarial arrivals.

Fig. 8. Successful exploit rate vs. per-step defense budget (patches per unit time) under Model-based RL
simulations.

0 100 200 300 400 500 600
Queue length N

0.00

0.02

0.04

0.06

D
en

si
ty

Baseline
RL

Fig. 9. Trace-driven comparison of queue-length
probability densities on ARVO (RL vs. baseline) for
per-step budget 𝑏 = 1.0 patches per unit time.

0 200 400 600 800
Queue length N

0.000

0.005

0.010

0.015

0.020

D
en

si
ty

Baseline
RL

Fig. 10. Queue-length histogram under the empirical
aggregate baseline budget and the RL-reallocated
policy. Statistics are reported in the text.

Setup: We consider 𝑇 = 10
4
rounds, each with 𝐻 = 10 steps, and use the model 𝜇ℓ (𝑡) = 3𝑁 (𝑡)

for exploitation rate in these runs. Vulnerability arrivals are drawn under two regimes: (i) stochastic
arrivals with rate 𝜆 = 5 at every step, and (ii) adversarial arrivals that vary arbitrarily in [0, 10].
We compare a fixed defending policy (constant per-step 𝜇𝑑) to the learned policy produced by our

RL procedure, sweeping the per-step defense budget 𝑏 (measured in patches per unit time) and

plotting the resulting successful exploit rates.

Results: Figure 8 shows successful exploit rate versus defense budget for the two arrival regimes.

The learned policy reduces successful exploits substantially across budgets and attains up to a 55%

reduction for certain budget points in the stochastic regime. In the adversarial regime, the learned

policy both reduces the mean exploit rate and smooths high-frequency fluctuations compared to

the fixed allocation, reducing both the mean exploit rate and its variability compared to the fixed

allocation. The reduction in variability improving predictability of performance, thereby enables

an organization to better plan their budget to achieve a specific goal against the attacks.

8.2 Trace-driven RL evaluation
We now evaluate the RL defense policy using a trace-driven simulator built from the ARVO dataset.

Vulnerabilities arrive at each time step according to the ARVO records. The empirical per-step

defended counts from ARVO define the trace-driven baseline. At each time step, the RL agent

observes the current queue length (the number of active vulnerabilities) as the state and selects a

defense-rate action. The simulator maps this rate to an integer number of defended vulnerabilities

and updates the next state accordingly. We then compare the RL policy against the ARVO baseline.

Setup: We preprocess the ARVO data by binning records into 6-minute intervals; each bin is one

time step and ten consecutive bins form an episode (one hour). This produces 𝑇 = 64,395 episodes.

, Vol. 1, No. 1, Article . Publication date: January 2026.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

AQueueing-Theoretic Framework for Dynamic Attack Surfaces: Data-Integrated Risk Analysis and Adaptive Defense 19

Table 1. Trace-driven comparison statistics: queue-length mean & variance (ARVO, RL vs. baseline).

Policy / Budget (patches per unit time) Mean Variance

Baseline (data) 219.9 30,930

RL (b=0.5) 59.4 1,602

RL (b=1.0) 13.0 219

RL (b=1.5) 4.7 56

RL (b=2.0) 1.2 6

RL (b=2.5) 0.1 0.4

RL (b=3.0) 0.1 0.3

Here, the defense budget 𝑏 represents the maximum number of patches that can be applied per unit

time. We do not split the data into separate training and test sets; the full trace is used for learning

and we observe the result of the learning. For each bin, the number of reported vulnerabilities

is used as the stepwise arrival count, and the empirical defended counts in ARVO serve as the

baseline defense events. The RL agent observes only the arrivals and selects a defense-rate action;

the simulator maps that rate to an integer defended count via a Poisson draw and updates the next

state accordingly. The selected rate is converted to an integer defended count by drawing from

a Poisson distribution and truncating to the nearest nonnegative integer. At each step, both the

baseline and the RL defended counts (together with the arrivals) are applied to update the queue

state according to Eq. (1). The ARVO trace does not include separate attacker exploit events, so our

trace-driven evaluation considers only vulnerability arrivals and defenses.

The RL action space is {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} and at each step the agent selects a defense-rate
action 𝜇 from this set. Because the agent is table-based, we set the maximum indexed queue size

for the Q-table to 𝑁max = 300; if a larger queue is observed the agent still uses the 𝑁max index for

action selection, while we record the actual queue length for statistics. We use a per-step budget 𝑏

(not an episode-level budget) and sweep 𝑏 ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} patches per unit time across

simulations. As each time step represents a 6-minute interval, a budget of 𝑏 = 1.0 corresponds

to an average capacity of 10 patches per hour. The optimistic bonus in the Q-value update is

B(𝑘) = 𝑐bonus

√︁
𝐻 3/𝑘 with 𝑐bonus = 0.1. To ensure a fair comparison, we tune a weight on the RL

defense cost so that the RL policy’s total defended count over the full trace matches the empirical

baseline’s total defended count. All other algorithmic settings follow Section 7.2.

Results: Figure 9 shows the queue-length density when per-step budget is 𝑏 = 1.0 patches per

unit time. For each budget 𝑏, we average results over 5 random seeds and report the queue-length

mean and variance for the RL policy and the baseline in Table 1. The RL policy consistently reduces

the queue length compared to the baseline, and the gains become larger as the per-step budget

increases.

8.3 Aggregate-budget RL reallocation
We next compare the baseline and RL when both use the same aggregate defense budget estimated

from the data in Figure 7. Specifically, we ask how queue-length performance changes if the RL

policy is allowed to reallocate, over time, the total defense rates used by the baseline.

Setup: Following Figure 7, we segment the ARVO trace into ten regimes and estimate the baseline

per-segment defense rates. In this subsection, we keep the ARVO arrivals unchanged and generate

the baseline defended counts by drawing Poisson samples with the estimated per-segment rates.

We then sum the baseline’s defense rates over the full period to obtain its aggregate defense budget.

The RL operates as in Section 8.2 but is constrained so that its total defense effort over the full

, Vol. 1, No. 1, Article . Publication date: January 2026.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal

period does not exceed this aggregate budget. This allows us to evaluate RL reallocation across

steps under an equal total defense resource.

Results (representative run): Figure 10 plots the queue-length densities for the baseline (with the
estimated defense rates) and for RL (with aggregate-budget reallocation). RL substantially reduces

large queue lengths compared to the baseline. The summary statistics are mean(𝑁) = 146.63,

𝑁95 = 379, and 𝑁99 = 412.2 for RL. mean(𝑁) = 267.52, 𝑁95 = 772, and 𝑁99 = 852 for baseline. Thus,

RL reallocation substantially reduces the mean queue length and shrinks the high-percentile tails

of the distribution.

9 Discussion and Future Directions
We introduced a spatio-temporal queueing abstraction for the attack surface that models incoming

vulnerabilities as arrivals and departures as either successful exploits or successful patches, and

used this framework to derive several analytic insights. In particular, we highlight (i) a highly

non-linear relationship between defense-resource shortfall and the rate of successful exploits, (ii)

the emergence of long-range temporal dependence in the attack surface process when vulnerability

lifetimes are heavy-tailed, and (iii) the fact that an aggregate AI-amplification of arrival and exploit

rates can increase breach rates even when the attack surface distribution remains qualitatively

similar.

While our analysis primarily focuses on a single-component system for clarity, the framework

naturally extends to multi-component and multi-organizational settings. An organization’s total

attack surface can be viewed as a collection of correlated queues, each representing a subsystem such

as authentication, storage, or cloud services. At a larger scale, an ecosystem of organizations can

be modeled as a network of statistically dependent queueing systems, capturing interdependencies

arising from shared software libraries, third-party integrations, or supply-chain relationships. For

tractability, we restrict our formal analysis to the single-queue case, which already exhibits the

essential dynamics of heavy-tailed persistence, feedback coupling, and resource constraints that

characterize real-world attack surface evolution.

Building on these foundations, natural directions for future work include extending the queue-

ing abstraction tomultiple, dependent queues that reflect component structure; modeling the

ecosystem of multiple organizations (and their interactions) as an interconnected queueing sys-

tem; exploring collaborative defense formulations (e.g., multi-agent approaches) under resource

constraints; and expanding empirical data collection to strengthen and validate the modeling

assumptions.

10 Conclusion
We introduced a novel queueing-theoretic formulation to model the evolving cyber-attack surface,

capturing both its temporal dynamics and spatial structure. Rather than following a narrow perspec-

tive that would focus on isolated attack vectors or specific vulnerabilities, our approach provides a

holistic framework that reveals how systemic behaviors—such as heavy-tailed patching times—lead

to long-range temporal dependencies in vulnerability exposure. The model also accommodates

AI-induced amplification effects, allowing us to quantify the spatio-temporal dynamics of the

attack surfaces under AI-generated threats and defenses. This dynamic queueing abstraction also

lays the foundation for a principled defense allocation strategy, which we cast as a constrained

sequential control problem and solve using reinforcement learning. We validated the framework

using large-scale open-source vulnerability traces and show that an RL-based adaptive defense

policy with near-optimal regret can reduce the mean attack surface size and the high-percentile

tails under the same aggregate budget.

, Vol. 1, No. 1, Article . Publication date: January 2026.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

AQueueing-Theoretic Framework for Dynamic Attack Surfaces: Data-Integrated Risk Analysis and Adaptive Defense 21

References
[1] Sanae Amani, Christos Thrampoulidis, and Lin Yang. 2021. Safe reinforcement learning with linear function approxi-

mation. In International Conference on Machine Learning. PMLR, 243–253.

[2] Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. 2019. Provably efficient q-learning with low switching cost.

Advances in Neural Information Processing Systems 32 (2019).
[3] Berkay Berabi, Alexey Gronskiy, Veselin Raychev, Gishor Sivanrupan, Victor Chibotaru, and Martin Vechev. 2024.

DeepCode AI Fix: Fixing Security Vulnerabilities with Large Language Models. arXiv:2402.13291 [cs.CR]

[4] Richard Fang, Rohan Bindu, Akul Gupta, Qiusi Zhan, and Daniel Kang. 2024. LLM Agents can Autonomously Hack

Websites. arXiv:2402.06664 [cs.CR]

[5] Andrew Feutrill, Matthew Roughan, Joshua Ross, and Yuval Yarom. 2020. A queueing solution to reduce delay in

processing of disclosed vulnerabilities. In 2020 Second IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA). IEEE, 1–11.

[6] Natarajan Gautam. 2012. Analysis of queues. CRC Press, LLC, Boca Raton, Florida, United States 10 (2012), 2222496.
[7] Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah, Yuxin Wen, and Tom Goldstein. 2024. Coercing LLMs to do

and reveal (almost) anything. arXiv:2402.14020 [cs.LG]

[8] Kaushik Haldar and Bimal Kumar Mishra. 2017. Mathematical model on vulnerability characterization and its impact

on network epidemics. International Journal of System Assurance Engineering and Management 8, 2 (2017), 378–392.
[9] Charles Harry, Ido Sivan-Sevilla, and Mark McDermott. 2025. Measuring the size and severity of the integrated cyber

attack surface across US county governments. Journal of Cybersecurity 11, 1 (2025), tyae032.

[10] Jiawei Huang, Jinglin Chen, Li Zhao, Tao Qin, Nan Jiang, and Tie-Yan Liu. 2022. Towards deployment-efficient

reinforcement learning: Lower bound and optimality. arXiv preprint arXiv:2202.06450 (2022).
[11] Xin Jin, Charalampos Katsis, Fan Sang, Jiahao Sun, Elisa Bertino, Ramana Rao Kompella, and Ashish Kundu. 2023.

Prometheus: Infrastructure Security Posture Analysis with AI-generated Attack Graphs. arXiv:2312.13119 [cs.CR]

[12] Jack A. Jones. 2011. FAIR - Factor Analysis of Information Risk. Risk Management Insight LLC (2011). https:

//www.risklens.com/resources/fair-risk-analysis-model

[13] M. Khosravi-Farmad and A. Ghaemi-Bafghi. 2020. Bayesian Decision Network-Based Security Risk Management

Framework. Journal of Network and Systems Management 28 (2020), 1794–1819. doi:10.1007/s10922-020-09558-5
[14] Igor Kotenko, Diana Gaifulina, and Igor Zelichenok. 2022. Systematic Literature Review of Security Event Correlation

Methods. IEEE Access 10 (2022), 43387–43420. doi:10.1109/ACCESS.2022.3168976
[15] Richard Lippmann and Daniel J Fried. 2005. Evaluating Intrusion Detection Systems: The 1998 DARPA Off-Line

Intrusion Detection Evaluation. In Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 162–184.

[16] Mingyan Liu. 2021. Embracing Risk: Cyber Insurance as an Incentive Mechanism for Cybersecurity. Springer.
[17] Qisi Liu, Liudong Xing, and Chencheng Zhou. 2019. Probabilistic modeling and analysis of sequential cyber-attacks.

Engineering Reports 1, 4 (2019). doi:10.1002/eng2.12065
[18] Pratyusa K. Manadhata and Jeannette M. Wing. 2011. An Attack Surface Metric. IEEE Transactions on Software

Engineering 37, 3 (2011), 371–386. doi:10.1109/TSE.2010.60

[19] Xiang Mei, Pulkit Singh Singaria, Jordi Del Castillo, Haoran Xi, Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili, Adam

Doupé, Hammond Pearce, Brendan Dolan-Gavitt, et al. 2024. Arvo: Atlas of reproducible vulnerabilities for open

source software. arXiv preprint arXiv:2408.02153 (2024).
[20] Daniel Miessler. [n. d.]. AI Agents. Link for the LinkedIn Post. Accessed: 2024-11-07.

[21] Sobhan Miryoosefi and Chi Jin. 2022. A simple reward-free approach to constrained reinforcement learning. In

International Conference on Machine Learning. PMLR, 15666–15698.

[22] Federal Bureau of Investigation. 2024. FBIWarns of Increasing Threat of Cyber Criminals Utilizing Artificial Intelligence.

FBI Posting Link.

[23] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. 2012. Dynamic Security Risk Management Using Bayesian Attack

Graphs. IEEE Transactions on Dependable and Secure Computing 9, 1 (2012), 61–74. doi:10.1109/TDSC.2011.34

[24] Julie J.C.H. Ryan and Scott D. Dexter. 2009. A Bayesian Network Model for Predicting Cyber Security Threats. Journal
of Information Assurance and Security 4, 2 (2009), 105–114. https://www.mirlabs.org/jias/Volume4_2_2009/Vol4_2.html

[25] Abdulhakim Sabur, Ankur Chowdhary, Dijiang Huang, and Adel Alshamrani. 2022. Toward scalable graph-based

security analysis for cloud networks. Computer Networks 206 (2022), 108795. doi:10.1016/j.comnet.2022.108795

[26] Ming Shi, Yingbin Liang, and Ness Shroff. 2023. Near-optimal Adversarial Reinforcement Learning with Switching

Costs. In Eleventh International Conference on Learning Representations.
[27] Ming Shi, Yingbin Liang, and Ness Shroff. 2023. A near-optimal algorithm for safe reinforcement learning under

instantaneous hard constraints. In International Conference on Machine Learning. PMLR, 31243–31268.

[28] Robin Staab, Mark Vero, Mislav Balunović, and Martin Vechev. 2024. Large Language Models are Advanced Anonymiz-

ers. arXiv:2402.13846 [cs.AI]

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://arxiv.org/abs/2402.13291
https://arxiv.org/abs/2402.06664
https://arxiv.org/abs/2402.14020
https://arxiv.org/abs/2312.13119
https://www.risklens.com/resources/fair-risk-analysis-model
https://www.risklens.com/resources/fair-risk-analysis-model
https://doi.org/10.1007/s10922-020-09558-5
https://doi.org/10.1109/ACCESS.2022.3168976
https://doi.org/10.1002/eng2.12065
https://doi.org/10.1109/TSE.2010.60
https://www.linkedin.com/posts/danielmiessler_so-i-want-to-talk-real-quick-about-the-recent-activity-7128075523326439424-FyvY?utm_source=combined_share_message&utm_medium=member_desktop_web
https://www.fbi.gov/contact-us/field-offices/sanfrancisco/news/fbi-warns-of-increasing-threat-of-cyber-criminals-utilizing-artificial-intelligence
https://doi.org/10.1109/TDSC.2011.34
https://www.mirlabs.org/jias/Volume4_2_2009/Vol4_2.html
https://doi.org/10.1016/j.comnet.2022.108795
https://arxiv.org/abs/2402.13846

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal

[29] Christopher Theisen, Nuthan Munaiah, Mahran Al-Zyoud, Jeffrey C Carver, Andrew Meneely, and Laurie Williams.

2018. Attack surface definitions: A systematic literature review. Information and Software Technology 104 (2018),

94–103.

[30] H. Wang, D. Zhang, and S. Jajodia. 2008. An Attack-Graph Based Probabilistic Security Metric. In IFIP Data and
Applications Security ’08. Springer, 109–124. https://link.springer.com/chapter/10.1007/978-0-387-09699-5_8

[31] Yueqi Xie, Minghong Fang, Renjie Pi, and Neil Gong. 2024. GradSafe: Detecting Unsafe Prompts for LLMs via

Safety-Critical Gradient Analysis. arXiv:2402.13494 [cs.CL]

[32] Qi Zhang, Chunjie Zhou, Yu-Chu Tian, Naixue Xiong, Yuanqing Qin, and Bowen Hu. 2018. A Fuzzy Probability

Bayesian Network Approach for Dynamic Cybersecurity Risk Assessment in Industrial Control Systems. IEEE
Transactions on Industrial Informatics 14, 6 (2018), 2497–2506. doi:10.1109/TII.2017.2768998

A Proof of Theorem 1
Let us define the indicator variable:

𝐼𝑖 (𝑡)
△
=


1, a vulnerability arrives in ((𝑖 − 1)𝛿, 𝑖𝛿)

and still in the system at time 𝑡

0, otherwise

.

for 𝛿 being the amount of temporal increment. Therefore,

𝑁 (𝑡) =
𝑡/𝛿∑︁

𝑖=−∞
𝐼𝑖 (𝑡). (11)

For any 𝑡, 𝜏 such that 𝑡 ⩽ 𝜏 ,

E [𝑁 (𝑡)𝑁 (𝜏)] = E

[
𝑡/𝛿∑︁

𝑖=−∞

𝜏/𝛿∑︁
𝑗=−∞

𝐼𝑖 (𝑡)𝐼 𝑗 (𝜏)
]

=
∑︁

{𝑖⩽𝑡/𝛿,𝑗⩽𝜏/𝛿 | 𝑖≠𝑗 }
E
[
𝐼𝑖 (𝑡)𝐼 𝑗 (𝜏)

]
+

𝑡/𝛿∑︁
𝑖=−∞

E [𝐼𝑖 (𝑡)𝐼𝑖 (𝜏)]

=
∑︁

{𝑖⩽𝑡/𝛿,𝑗⩽𝜏/𝛿 | 𝑖≠𝑗 }
E [𝐼𝑖 (𝑡)] E

[
𝐼 𝑗 (𝜏)

]
+

𝑡/𝛿∑︁
𝑖=−∞

E [𝐼𝑖 (𝑡)𝐼𝑖 (𝜏)] , (12)

where Eq. (12) follows since 𝐼𝑖 (𝑡) and 𝐼 𝑗 (𝜏) are independent for 𝑖 ≠ 𝑗 . We can also write

E [𝑁 (𝑡)]E [𝑁 (𝜏)] = E

[
𝑡/𝛿∑︁

𝑖=−∞
𝐼𝑖 (𝑡)

]
E

[
𝜏/𝛿∑︁
𝑗=−∞

𝐼 𝑗 (𝜏)
]

=
∑︁

{𝑖⩽𝑡/𝛿,𝑗⩽𝜏/𝛿 | 𝑖≠𝑗 }
E [𝐼𝑖 (𝑡)] E

[
𝐼 𝑗 (𝜏)

]
+

𝑡/𝛿∑︁
𝑖=−∞

E [𝐼𝑖 (𝑡)] E [𝐼𝑖 (𝜏)] . (13)

Combining Eq. (12) and (13) we get,

cov (𝑁 (𝑡), 𝑁 (𝜏)) = E [𝑁 (𝑡)𝑁 (𝜏)] − E [𝑁 (𝑡)] E [𝑁 (𝜏)]

=

𝑡/𝛿∑︁
𝑖=−∞

{E [𝐼𝑖 (𝑡)𝐼𝑖 (𝜏)] − E [𝐼𝑖 (𝑡)] E [𝐼𝑖 (𝜏)]} (14)

=

𝑡/𝛿∑︁
𝑖=−∞

{𝜆𝛿 [1 − 𝐹 (𝜏 − 𝑖𝛿)] − 𝑜 (𝛿)} , (15)

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://link.springer.com/chapter/10.1007/978-0-387-09699-5_8
https://arxiv.org/abs/2402.13494
https://doi.org/10.1109/TII.2017.2768998

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

AQueueing-Theoretic Framework for Dynamic Attack Surfaces: Data-Integrated Risk Analysis and Adaptive Defense 23

where the first term in (15) is due to E [𝐼𝑖 (𝑡)𝐼𝑖 (𝜏)] and the o(𝛿) is due to E [𝐼𝑖 (𝑡)] E [𝐼𝑖 (𝜏)] and that

the probability of two vulnerabilities in the same instant is o(𝛿). As 𝛿 → 0
+
,

cov (𝑁 (𝑡), 𝑁 (𝜏)) =
∫ 𝑡

−∞
𝜆 [1 − 𝐹 (𝜏 − 𝑠)] 𝑑𝑠 = 𝜆

∫ ∞

|𝜏−𝑡 |
[1 − 𝐹 (𝑠)] 𝑑𝑠. (16)

Since the above covariance is a function of the time difference 𝑡 − 𝜏 only, {𝑁 (𝑡)} is a stationary
process. Thus, for heavy-tailed 𝐹 (𝑠), the autocovariance function decays slower than (𝜏 − 𝑡)2

,

leading to a long-range dependent attack surface.

B Proof of Theorem 2
Proof. For readability, we remove some indices when the context is clear. Recall that

˜Qℎ (𝑡)
denotes the estimate-Q-value function, continuously updated from new samples at step ℎ and time 𝑡 ,

while Qℎ (𝑡) denotes the belief-Q-value function, a stabilized version used to determine the defense

action and updated only at triggering times {𝑡𝑛}𝑛≥1.

Step 1: Instantaneous regret decomposition: Let ˜𝛿ℎ (𝑡) be the instantaneous regret at step ℎ
and time 𝑡 . Following the standard optimistic decomposition,

˜𝛿ℎ (𝑡) =
(

max

{
˜Qℎ (𝑡↑), ˜Qℎ (𝑡)

}
− Q∗,ℎ

)(
𝑁ℎ (𝑡), 𝜇ℎ

𝑑
(𝑡)

)
≤ | ˜Qℎ (𝑡↑) − Q∗,ℎ | + | ˜Qℎ (𝑡) − ˜Qℎ (𝑡↑) |, (17)

where 𝑡↑ = 𝜏last (𝑡) + 1 denotes the most recent triggering time before 𝑡 . The first term corresponds

to the standard value-estimation error, and the second term represents the additional deviation

introduced by the delayed belief update.

Step 2: Recursive relation for ˜Qℎ (𝑡): The update of the estimate- ˜𝑔𝑄-value at visit 𝑡 can be

expanded as

˜Qℎ
𝑡 (𝑁, 𝜇𝑑) − Q𝜋,ℎ (𝑁, 𝜇𝑑)

= 𝛼 (𝑡𝑖)
(
𝐻 − Q𝜋,ℎ (𝑁, 𝜇𝑑)

)
+

𝑘∑︁
𝑖=1

𝛼 (𝑡𝑖)
[
𝐶ℎ (𝑁, 𝜇𝑑)

+ 𝑉̃ ℎ+1

𝑡𝑖

(
𝑁ℎ+1

𝑑
(𝑡𝑖)

)
−𝑉 𝜋,ℎ+1

(
𝑁ℎ+1 (𝑡𝑖)

)
+

(
𝑃ℎ𝑡𝑖 − 𝑃ℎ

)
𝑉 𝜋,ℎ+1 (𝑁, 𝜇𝑑) + B(𝑡𝑖)

]
, (18)

where 𝛼 (𝑡𝑖) is the step size, 𝐵(𝑡𝑖) is the exploration bonus, and 𝑃ℎ𝑡𝑖 is the empirical transition model.

This expression separates the stochastic update noise, transition deviation, and optimism term.

Step 3: Bounding the delayed perturbation: For any 𝑡 > 𝑡↑, the cumulative drift between two

consecutive triggers satisfies

| ˜Qℎ (𝑡) − ˜Qℎ (𝑡↑) |
(
𝑁ℎ (𝑡), 𝜇ℎ

𝑑
(𝑡)

)
≤ 𝜙𝑘 +

𝑡∑︁
𝑖=𝜏

last
(𝑡)+1

𝛼 (𝑡) ˜𝜁 ℎ+1

𝑡𝑖
+ ¯𝜁 ℎ

𝑡 , (19)

where 𝜙𝑘 =𝑂
(√︁

𝐻 3/𝑘
)
and

¯𝜁 ℎ
𝑡 =𝑂

(√︁
𝐻 3/𝑡

)
hold uniformly with high probability. Both terms can be

absorbed into a constant multiple of 𝜙𝑘 , since 𝜙𝑡↑ ≤ (1+𝑂 (1/𝐻))𝜙𝑘 under the geometric triggering

rule.

, Vol. 1, No. 1, Article . Publication date: January 2026.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Jihyeon Yun, Abdullah Yasin Etcibasi, Ming Shi, and C. Emre Koksal

Step 4: Coefficient aggregation:When summing Eq. (19) over all time steps, each successor-state

error
˜𝜁 ℎ+1

𝑡↑
is weighted by the accumulated step-size coefficients. Using the triggering sequence

𝑡𝑛 = ⌈(1 + 𝜀)𝑛⌉ with 𝜀 = 1

2𝐻 (𝐻+1) and initial index 𝑟0 =
⌈

log(10𝐻 2)
log(1+𝜀)

⌉
, we obtain∑︁

𝑡

(
1{no trigger at 𝑡} 𝛼 (𝜏last (𝑡)) + 1{trigger at 𝑡} 𝛼 (𝑡)

)
≤ 1 + 3

𝐻
, (20)

showing that the delay inflates the propagation factor by at most (1 + 3/𝐻).
Step 5: Regret recursion and final bound: Let 𝑅ℎ =

∑
𝑡

˜𝛿ℎ (𝑡). Combining the above results yields

𝑅ℎ ≤ (1 +𝑂 (1/𝐻))𝑅ℎ+1 + 𝑂̃ (
√
𝐻 3𝑇).

Unrolling the recursion over ℎ = 1, . . . , 𝐻 gives

∑𝐻
ℎ=1

𝑅ℎ = 𝑂̃ (
√
𝐻 3𝑇). Accounting for the bounded

per-step cost 𝐶 and defense-cap budget 𝑏 scales the bound to 𝑂̃ (
√
𝐻 3𝐶4𝑏𝑇). The number of belief-

Q-value updates, and hence policy changes, is logarithmic in time. Thus, the cumulative switching

cost contributes at most 𝑂̃ (log𝑇) to regret, absorbed by the main term.

□

, Vol. 1, No. 1, Article . Publication date: January 2026.

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Problem Formulation
	5 Illustrative Examples: Static Resource Allocation
	5.1 M/M/ Abstraction
	5.2 AI-driven Dynamics

	6 Data Integration: Software Supply Chain
	6.1 Validating the Proposed Queueing Model on the ARVO Dataset
	6.2 Temporal Characterization of Vulnerabilities of Software Releases

	7 A Near-Optimal RL Algorithm for Adaptive Defense
	7.1 Problem Setting and RL Framework
	7.2 Algorithm Design
	7.3 Theoretical Regret Bound: Near-Optimality

	8 Numerical Evaluation
	8.1 Model-based RL evaluation
	8.2 Trace-driven RL evaluation
	8.3 Aggregate-budget RL reallocation

	9 Discussion and Future Directions
	10 Conclusion
	References
	A Proof of Theorem 1
	B Proof of Theorem 2

