

1 Mixture-of-Experts Actor-Critic for Regime-Switching MDPs: 2 Impossibility Results and Performance Guarantees 3

4 MING SHI, University at Buffalo (SUNY), USA
5

6 Performance-critical computer and communication systems routinely traverse heterogeneous operating
7 regimes, including light/heavy traffic, congestion episodes, workload phase shifts, mobility-induced channel
8 changes, and benign/adversarial operation. This regime heterogeneity induces structured nonstationarity:
9 the Markov decision process (MDP) governing the system can switch in its transition dynamics and/or cost
10 structure. We show that this phenomenon is not merely a modeling nuisance, but a structural obstacle for
11 monolithic stationary actor-critic methods when objectives couple efficiency with systems metrics such as
12 stability, delay, and resource costs. We formulate *regime-switching MDPs* (RS-MDPs) with an unobserved,
13 piecewise-constant regime process and evaluate performance against a regime-aware benchmark that applies
14 the per-regime optimal stationary policy. We then propose a *regime-aware mixture-of-experts actor-critic* (RA-
15 MoE-AC) algorithm that combines expert policies, an online gating mechanism for regime-adaptive selection,
16 and a lightweight safety projection that enforces minimum use of a stabilizing expert. Our contributions are
17 twofold. First, we prove impossibility theorems showing that any stationary policy can suffer a non-vanishing
18 optimality gap against the regime-aware benchmark, and that regime mismatch can destroy queue stability
19 even when each regime is individually stabilizable. Second, for RA-MoE-AC we derive switching-aware
20 performance bounds whose leading terms scale as $\tilde{O}(\sqrt{T} \log M + S_T \log M + S_T t_{\text{mix}})$, plus approximation terms
21 that decrease as the expert class is enriched (with larger M), and establish strong stability in queueing. Here,
22 T is the horizon, S_T the number of regime switches, and t_{mix} the per-regime mixing time.

23 **ACM Reference Format:**

24 Ming Shi. 2026. Mixture-of-Experts Actor-Critic for Regime-Switching MDPs: Impossibility Results and
25 Performance Guarantees. In *Proceedings of (SIGMETRICS'26)*. ACM, New York, NY, USA, 45 pages. <https://doi.org/XXXXXX.XXXXXXX>

26 **1 Introduction**

27 Modern networked systems, e.g., wireless access networks, edge/cloud platforms, and cyber-physical
28 infrastructures, are usually nonstationary [12, 14, 27, 37]. They operate under shifting traffic
29 intensities, changing connectivity and interference, evolving workload mixes, time-varying resource
30 prices, and occasional failures or adversarial disruptions. These effects are often *structured*. For
31 certain periods, the system behaves according to a relatively stable *operating regime*, and then
32 switches to a different mode in which the dominant bottlenecks, dynamics, and costs change.

33 We study the fundamental algorithmic and theoretical consequences of such *regime switching*
34 through a latent mode variable z_t that selects among a finite set of stationary/static Markov decision
35 processes (MDPs). This abstraction captures canonical phenomena in systems, e.g.,

- 36 • *Queueing and scheduling.* In wireless scheduling, routing, and cross-layer control, policies that
37 are efficient in light traffic can be persistently misaligned in heavy traffic, where stability margins

40 Author's Contact Information: Ming Shi, mshi24@buffalo.edu, University at Buffalo (SUNY), Buffalo, New York, USA.

41 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
42 provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
43 full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
44 Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
45 prior specific permission and/or a fee. Request permissions from permissions@acm.org.

46 *SIGMETRICS'26, Ann Arbor, MI*

47 © 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.

48 ACM ISBN 978-1-4503-XXXX-X/2018/06

49 <https://doi.org/XXXXXX.XXXXXXX>

50 and backlog growth dominate [17, 25, 30, 38]. Mobility and interference can also fundamentally
 51 shift the effective service process, changing which users are bottlenecks.

- 52 • *Edge/cloud and data centers.* Workload phases (e.g., diurnal patterns, flash crowds, and workload-
 53 mix shifts) can abruptly change resource bottlenecks, (e.g., CPU, network, and memory) and the
 54 right provisioning logic [7, 18].
- 55 • *Cyber-physical and security-aware systems.* Systems may switch between benign operation,
 56 partial failures, and adversarial disturbance modes, changing both transition laws and costs (e.g.,
 57 penalties for risk exposure or safety violations) [9, 27].

58 A central implication is immediate: when z_t changes, the best control policy can change with it.
 59 Our goal is close to a *best-of-many-worlds* guarantee where the *active* “world” (regime) itself can
 60 change over time, rather than the classic best-of-both-worlds paradigm [32, 43].

62 1.1 Why Regime Switching Breaks the Stationary Actor-Critic Method

63 Actor-critic methods are attractive in large-scale systems because they are online, scalable, and
 64 compatible with function approximation [8, 22, 23, 39]. However, standard analyses typically assume
 65 a single stationary MDP. Under regime switching, three core objects move simultaneously: (i) the
 66 transition kernel (hence the stationary occupancy measure), (ii) the cost landscape, and (iii) the
 67 critic fixed point. As a result, the critic becomes a moving target, advantage surrogates become
 68 biased after switches, and actor updates can chase transient artifacts.

69 A tempting counter-argument is that a sufficiently expressive parameterization (e.g., using deep
 70 learning and/or neural networks [6, 42]) should learn a single policy that “works everywhere.” Our
 71 results show that this intuition is not just practically fragile but can be theoretically false. Even in
 72 benign dynamics, a single stationary policy may incur a *non-vanishing* performance gap relative
 73 to a regime-aware benchmark. Worse, in queueing systems, sustained regime mismatch creates a
 74 persistent service deficit, which leads to linear backlog growth and loss of stability.

75 To characterize systems-level behavior, e.g., post-switch transients, stability regions, and backlog/delay scaling, we adopt a regime-aware and stability-centric evaluation lens. On the *efficiency side*, we compete with a regime-aware benchmark that applies the per-regime optimal stationary
 76 policy on each segment, and we ask how the excess cost scales with the number of switches and the
 77 per-regime mixing time. On the *safety side*, for queueing instantiations we require strong stability,
 78 and we explicitly enforce a Lyapunov-drift safeguard rather than relying on stability as an emergent
 79 byproduct of learning. This emphasis is also dictated by our lower bounds in Section 4. That is,
 80 without an explicit regime-adaptive mechanism, both tracking efficiency and stability can fail.

81 1.2 Regime-Switching Markov Decision Processes

82 We model the system as a *regime-switching MDP* with a finite family of stationary MDPs $\{\mathcal{M}^{(z)}\}_{z \in \mathcal{Z}}$.
 83 A latent piecewise-constant process $\{z_t\}$ selects the active regime at time t . The agent does not
 84 observe z_t and the switching times. Our primary performance metric is *tracking regret* against the
 85 regime-aware benchmark that applies the per-regime optimal stationary policy on each segment.

86 There are several new challenges under regime switching. First, regime heterogeneity can
 87 create structural (policy-class) mismatch. Different regimes may induce *conflicting* optima, e.g., the
 88 optimal action flips on a frequently visited state, so any single stationary policy must compromise
 89 and can be persistently suboptimal. Second, the regime is latent, so fast post-switch inference is
 90 unavoidable. The agent must identify the active mode from the feedback and reallocate control
 91 quickly after switches. Third, critic learning becomes nonstationary. The relevant average-cost
 92 Bellman/Poisson fixed point (and hence advantage surrogates) changes across regimes, so critics
 93 must track segment-wise targets. Otherwise, temporal-difference (TD) bias propagates into the
 94

99 actor updates. Fourth, in queueing systems, inference and exploration errors are state-amplifying.
100 Sustained mis-selection yields a positive service deficit (negative drift fails), which causes backlog
101 to grow even when each regime is individually stabilizable. Together, these challenges motivate
102 a agent that represents multiple regime-specialized behaviors, performs online mode selection,
103 controls post-switch transients via timescale separation, and enforces a stability floor in queueing.
104

105 1.3 Main Contributions and Results

106 The main contributions and results in this paper are summarized as follows.
107

- 108 • **Impossibility results (Section 4).** We establish two complementary lower bounds that formalize
109 when regime adaptivity is *structurally necessary*. First, we construct an RS-MDP with regime-
110 independent dynamics and conflicting per-regime optimal actions, for which every stationary
111 policy incurs linear tracking regret $\text{Reg}(T) = \Omega(T)$ against the regime-aware benchmark, and
112 this persists even under slow regime-switching with an arbitrary minimum segment length L_{\min}
113 (Section 4.1). Second, we show that in queueing systems regime mismatch can destroy stability:
114 no fixed randomized priority rule stabilizes two regimes that swap the bottleneck queue, and
115 within a long “bad” segment the backlog grows at least linearly in L_{\min} (Section 4.2). Together,
116 these results explain why regime adaptivity is required for both efficiency and safety.
117
- 118 • **Algorithm: RA-MoE-AC (see discussion above and Section 5).** Our new algorithm, *Regime-
119 Aware Mixture-of-Experts Actor-Critic* (RA-MoE-AC), is designed around four coupled mechanisms
120 (see Algorithm 1). First, we adopt an MoE policy class with M expert actors so that different
121 experts can represent regime-specialized behaviors. This avoids the single-policy limitation
122 highlighted by Impossibility I and reduces the challenge to online mode selection. Second, we
123 train a state-dependent gate using a TD-residual-based mismatch signal. Within a fixed regime,
124 an expert whose critic is approximately Bellman-consistent exhibits small centered TD residuals,
125 whereas after a regime switch the previously well-matched expert typically produces systematic
126 residual spikes. The gate interprets the resulting bounded residual losses as online feedback and
127 reallocates probability mass after switches. Third, we maintain per-expert critics and enforce
128 timescale separation (critic fastest, gate intermediate, actor slow), so that value surrogates track
129 segment-wise fixed points after a short burn-in while limiting the propagation of transient critic
130 bias into actor updates. Finally, because Impossibility II shows that inference errors can be unsafe
131 in queueing systems, we enforce an explicit stability floor via a safety projection that guarantees
132 a minimum selection probability p_{\min} for a stabilizing baseline policy embedded as a dedicated
133 expert. This converts stability from an emergent property into an enforced constraint and enables
134 tracking-performance analysis within a guaranteed safe envelope.
- 135 • **Achievable performance guarantees (Section 6).** Our analysis chain starts from per-regime
136 geometric mixing, then establishes critic/baseline tracking and switching-aware gate regret, and
137 culminates in the main tracking theorem, yielding an explicit decomposition of the tracking regret.
138 In particular, the bound separates as follows: (i) expert-selection overhead $O(\sqrt{T \log M} + S_T \log M)$,
139 (ii) within-segment actor-critic learning terms (sublinear in T under timescale separation), (iii)
140 post-switch transients $O(S_T t_{\text{mix}})$, and (iv) irreducible approximation errors $\text{Approx}_{\pi} + \text{Approx}_V$.
141 Here T is the horizon, M the number of experts, S_T the number of regime switches, t_{mix} the
142 per-regime mixing time, and Approx_{π} / Approx_V denote policy/value approximation errors.
143 Consequently, if $S_T = o(T)$ and approximation errors vanish, then $\text{Reg}(T)/T \rightarrow 0$.
144
- 145 • **Stability/backlog guarantees via safety projection (Theorem 6).** Under a standard baseline
146 Lyapunov drift condition for the stabilizing expert, the safety projection yields strong stability and

148 an explicit backlog bound, i.e., $\limsup_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|Q_t\|_1 \leq B/\epsilon$. This modular result provides
 149 a regime-agnostic stability envelope within which the tracking guarantees operate.
 150

151 2 Related work

152 We review adjacent lines of work and clarify what remains unaddressed in our setting.
 153

154 *Learning for networks and systems.* Large-scale resource-management problems in networking
 155 and computing are routinely implemented atop cluster and control substrates such as Mesos and
 156 Borg [19, 41], which has motivated a wave of learning-based controllers that optimize end-to-end
 157 performance objectives directly from operational traces (e.g., deep reinforcement learning (RL) for
 158 cluster management and adaptive bitrate (ABR) control [28, 29]). Their evaluations are typically
 159 trace-driven and their analyses rarely provide stability-centric, switching-aware, and robustness
 160 guarantees against regime mismatch. In parallel, rigorous robustness and optimization guarantees
 161 have been developed, e.g., via Lyapunov/drift or performance guarantees under uncertainty, for
 162 related operational settings (e.g., data-center demand response and workload shifting) [11, 26]. Our
 163 work is closest in spirit to this latter lens, but targets the regime-switching RL setting.
 164

165 *Regret-optimal RL in stationary MDPs.* A large theory literature studies regret/sample-complexity
 166 guarantees for stationary MDPs, mainly in episodic or communicating settings [2, 3, 22, 36]. These
 167 results are foundational, but do not directly model piecewise-stationary regime switching, latent
 168 regime inference, or stability constraints that amplify transient errors.
 169

170 *Nonstationary and adversarial bandits/MDPs.* Nonstationarity has been studied under variation
 171 budgets, change-point models, and piecewise-stationary assumptions, predominantly in bandits
 172 and partially in MDPs [5, 10, 16, 35]. These formulations often compete with a best-in-hindsight
 173 stationary comparator or assume smoothly varying dynamics. In contrast, our benchmark is
 174 explicitly *regime-aware* (piecewise stationary), and the analysis must couple learning performance
 175 to stability metrics (backlog growth and strong stability), which leads to qualitatively different
 176 failure modes (Impossibility II) and motivates explicit stability safeguards.
 177

178 *Latent-regime models and latent-state RL.* Regime-switching can be viewed as a latent-variable
 179 control problem. Related works include hidden-parameter or latent-task MDPs, where a latent
 180 variable indexes system modes and the learner must adapt online [13, 24]. This literature typi-
 181 cally emphasizes transfer efficiency, whereas our focus is on *switching-aware tracking* against a
 182 regime-aware stationary benchmark together with stability guarantees. Our MoE gate provides
 183 a lightweight online mechanism for latent-mode selection that is directly tied to performance
 184 certificates (TD-residual-based losses) and to stability enforcement (safe-expert floor).
 185

186 *Quick change detection (QCD) and “detect-then-control.”* A classical approach to nonstationarity is
 187 to detect distributional changes and then restart or switch agents. Quickest change detection offers
 188 principled detectors such as CUSUM and Shiryaev-type procedures [4, 33, 40]. These tools provide
 189 strong detection-delay/false-alarm tradeoffs, but do not by themselves resolve how to maintain
 190 stability during detection uncertainty, or how to integrate detection signals with continuous control
 191 updates. Our gating mechanism can be interpreted as an online, control-coupled “soft” alternative,
 192 where TD residuals act as mismatch signals that continuously reweight experts, and the safety
 193 projection ensures stability even when the mismatch signal is noisy.
 194

195 *Robustness and competitiveness with imperfect predictions.* A parallel systems tradition studies
 196 robustness via competitive analysis and robustness-consistency tradeoffs when algorithms leverage
 197 imperfect forecasts of demand, prices, or workloads [11, 26]. These frameworks typically benchmark
 198 against an offline clairvoyant optimum via competitive ratio and aim for graceful degradation as
 199 prediction quality deteriorates. Our regime-switching setting differs in two fundamental respects.
 200 First, uncertainty is a *latent operating mode* that changes the identity of the optimal policy, rather
 201 than the quality of the predictions.
 202

than a forecast of future inputs. Second, the dominant constraint is *stability*, where mis-control induces state-amplifying backlog growth and cannot be smoothed by time-averaging.

Mixture-of-experts and modular policies. MoE architectures are a standard mechanism for representing heterogeneous behaviors and enabling conditional computation [15, 21, 34]. Relatedly, modular and compositional policies have shown strong empirical effectiveness in RL [1, 20]. However, existing theory does not target tracking a regime-aware stationary benchmark under piecewise-constant switching, while simultaneously enforcing queue stability guarantees. In our work, MoE is a structural requirement dictated by our impossibility results, i.e., when regimes induce conflicting optima on frequently visited states, any single stationary policy suffers a non-vanishing gap.

Queueing control, stability, and drift-based optimization. MaxWeight and related Lyapunov-drift policies are stability-optimal for broad classes of queueing networks under stationary primitives [17, 38]. The drift-plus-penalty framework further unifies stability and long-run cost optimization under stationary randomness [31], and cross-layer control connects these ideas to wireless systems [17]. Our setting departs from this classical regime, since arrivals/service statistics and/or cost tradeoffs switch across *latent* operating regimes.

3 Problem Formulation

This section formalizes the regime-switching Markov decision process (RS-MDP) studied in this paper. Concretely, the system evolves according to one of Z regimes (operating modes), where each regime $z \in \{1, \dots, Z\}$ is associated with its own stationary MDP $\mathcal{M}^{(z)}$. This regime abstraction captures common systems phenomena, e.g., workload phase changes in data centers, mobility/interference shifts in wireless networks, and time-varying resource prices or policy constraints in provisioning. It is also sufficiently structured to enable switching-aware performance guarantees, and stability guarantees for our queueing instantiations. For the convenience of the reader, Table 2 at the beginning of the appendix summarizes the key notation.

3.1 Regime-Switching MDP (RS-MDP)

We consider an agent interacting with a system over discrete time slots $t = 1, 2, \dots, T$. At each time t , the system is governed by a *latent regime* z_t , which is not revealed to the agent. The agent observes the current state s_t , selects an action a_t , then incurs an instantaneous cost and the system transitions to a next state s_{t+1} . Specifically,

- $s_t \in \mathcal{S}$ denotes the system state (e.g., queue lengths, channel state, server state, workload type);
- $a_t \in \mathcal{A}$ denotes the agent’s action (e.g., which queue/user to serve, how much resource to allocate);
- $z_t \in \mathcal{Z} \triangleq \{1, 2, \dots, Z\}$ denotes the latent operating mode (regime) of the environment.

The agent does not observe z_t or the switching times of the regime process $\{z_t\}$. Instead, it only observes the realized state-action trajectory (and the instantaneous cost defined below). This modeling choice reflects many systems in which the root cause of a mode change (e.g., interference pattern, workload phase, or adversarial activity) is not explicitly revealed at decision time, which motivates regime-adaptive policies utilizing mixture-of-experts with online gating.

Per-regime stationary MDP. For each regime $z \in \mathcal{Z}$, we define a stationary MDP $\mathcal{M}^{(z)} \triangleq (\mathcal{S}, \mathcal{A}, P^{(z)}, c^{(z)})$, where:

- $P^{(z)} : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ is the transition kernel under regime z , where $\Delta(\mathcal{S})$ denotes the set of probability distributions over \mathcal{S} . In particular, $P^{(z)}(\cdot | s, a)$ specifies the distribution of the next state given a state-action pair (s, a) .

- 246 • $c^{(z)} : \mathcal{S} \times \mathcal{A} \rightarrow [0, c_{\max}]$ is the instantaneous cost under regime z , i.e., the cost incurred by
 247 taking action a in state s , where $c_{\max} > 0$ is a known uniform upper bound (w.l.o.g., bounded
 248 costs can be rescaled to $[0, 1]$).

249 Intuitively, $\mathcal{M}^{(z)}$ describes how the system behaves if it were to remain in regime z over a time
 250 window. At time t , conditioned on $z_t = z$, the agent incurs cost $c_t = c^{(z)}(s_t, a_t)$, and the next
 251 state is drawn as $s_{t+1} \sim P^{(z)}(\cdot | s_t, a_t)$. Thus, the nonstationarity in our model arises from the
 252 switching of the latent regime process $\{z_t\}$, which selects which stationary MDP $\mathcal{M}^{(z)}$ governs
 253 the system at each time. The regime variable z_t can affect the system in two systems-relevant
 254 ways: (i) *switching dynamics*, where transition kernel $P^{(z)}$ changes across regimes (e.g., different
 255 channel/workload/failure statistics); and/or (ii) *switching objectives*, where instantaneous cost
 256 $c^{(z)}$ changes across regimes (e.g., energy price/carbon intensity or service-level agreement (SLA)
 257 weights).

258
 259 *Regime switching model.* We model $\{z_t\}$ as piecewise constant with finitely many switches up to
 260 horizon T . Specifically, there exist switch times $1 = \tau_0 < \tau_1 < \dots < \tau_{S_T} \leq T$ and we set $\tau_{S_T+1} \triangleq T+1$,
 261 such that z_t is constant on each segment $\mathcal{I}_k \triangleq \{\tau_{k-1}, \dots, \tau_k - 1\}$, $k = 1, \dots, S_T + 1$. We denote by
 262 S_T the number of switches and by $L_{\min} \triangleq \min_{k \in \{1, \dots, S_T+1\}} (\tau_k - \tau_{k-1})$ the minimum segment length.
 263

264 3.2 Performance Metric

265 This subsection defines the performance metric. We first define finite-horizon (time- T) costs for any
 266 policy, and then define infinite-horizon (steady-state) average costs under a *fixed* regime, which
 267 serve to define the per-regime optimal stationary benchmark.

268 *Finite-horizon cumulative cost and average cost.* Given a (possibly history-dependent) policy π
 269 over horizon T (denoted $\pi \triangleq \pi_{1:T}$), let $\{(s_t^\pi, a_t^\pi)\}_{t=1}^T$ denote the state-action trajectory generated by
 270 π interacting with the regime-switching environment. Define the finite-horizon cumulative cost
 271

$$272 C_T(\pi) \triangleq \mathbb{E}_\pi \left[\sum_{t=1}^T c^{(z_t)}(s_t^\pi, a_t^\pi) \right], \quad (1)$$

274 and the corresponding finite-horizon average cost $V_T(\pi) \triangleq \frac{1}{T} C_T(\pi)$. The expectation $\mathbb{E}_\pi[\cdot]$ is taken
 275 with respect to the randomness of the regime sequence $\{z_t\}$, the controlled state transitions under
 276 $\{P^{(z_t)}\}$, and the policy's (possibly randomized) action selection.
 277

278 *Infinite-horizon average cost under a fixed regime.* For any stationary randomized policy $\pi \in \Pi_{\text{stat}}$
 279 and fixed regime $z \in \mathcal{Z}$, define its steady-state infinite-horizon average cost

$$281 J^{(z)}(\pi) \triangleq \limsup_{N \rightarrow \infty} \frac{1}{N} \mathbb{E}_{P^{(z)}, \pi} \left[\sum_{t=1}^N c^{(z)}(s_t, a_t) \right], \quad (2)$$

283 where the regime is held fixed at z for all time (and the expectation is with respect to the trajectory
 284 induced by π under $P^{(z)}$). The lim sup is used for generality, since the limit need not exist without
 285 additional ergodicity or unichain assumptions. Then, for each regime $z \in \mathcal{Z}$, define a per-regime
 286 optimal stationary policy (breaking ties arbitrarily) by
 287

$$288 \pi^{*,(z)} \in \arg \min_{\pi \in \Pi_{\text{stat}}} J^{(z)}(\pi). \quad (3)$$

289 *Regime-aware tracking regret.* Since the environment can switch regimes over time, a natural com-
 290 parator is the *regime-aware* (nonstationary) benchmark policy $\pi_t^*(\cdot | s) \triangleq \pi^{*,(z_t)}(\cdot | s)$, which ap-
 291 plies the regime-optimal stationary policy for the currently active regime. Let $\{(s_t^{\pi^*}, a_t^{\pi^*})\}_{t=1}^T$ be the
 292 trajectory induced by $\{\pi_t^*\}$. Define the benchmark cumulative cost $C_T^* \triangleq \mathbb{E}_{\pi^*} \left[\sum_{t=1}^T c^{(z_t)}(s_t^{\pi^*}, a_t^{\pi^*}) \right]$,
 293

295 and the cumulative tracking regret

$$296 \quad \text{Reg}(T) \triangleq C_T(\pi) - C_T^*. \quad (4)$$

297 We also report the average (per-step) regret $\text{Reg}(T)/T$, which is directly comparable to the finite-
298 horizon average cost $V_T(\pi)$. The metric (4) evaluates how well an online agent tracks the best
299 stationary behavior for each regime and is the standard benchmark for obtaining switching-aware
300 bounds that scale with the number of regime changes.
301

302 3.3 Policy Class: Mixture-of-Experts Actor-Critic

303 We now specify the parametric policy class considered in this paper. The key idea is to represent
304 regime-dependent behavior via a mixture-of-experts (MoE), i.e., different experts specialize to
305 different operating modes, while a gating network adaptively selects experts online based on the
306 observed state.
307

308 *Actor and mixture policy.* We consider a mixture policy with M experts. Let $\pi_{\phi_m}^{(m)}(\cdot | s)$ be the
309 m -th expert policy parameterized by ϕ_m and denote $\phi \triangleq (\phi_1, \dots, \phi_M)$. Then, the actor with mixture
310 policy is
311

$$312 \quad \pi_{\theta, \phi}(a | s) \triangleq \sum_{m=1}^M g_\theta(m | s) \pi_{\phi_m}^{(m)}(a | s), \quad (5)$$

313 where $g_\theta(\cdot | s) \in \Delta_M$ is a gating distribution over experts, parameterized by θ . A standard choice is a
314 softmax gate $g_\theta(m | s) = \frac{\exp(u_\theta^{(m)}(s))}{\sum_{j=1}^M \exp(u_\theta^{(j)}(s))}$, where $u_\theta^{(m)}(s)$ is a score function (e.g., linear or a shallow
315 network). Our analysis assumes the score functions are regular enough so that $\nabla_\theta \log g_\theta(m | s)$ is
316 uniformly bounded. Although $\pi_{\theta, \phi}$ is stationary as a mapping from s to a distribution over actions,
317 it can effectively adapt to regime changes through state-dependent gating and expert specialization.
318

319 *Critic and value function approximation.* We maintain per-expert critics $\{V_{w_m}^{(m)}\}_{m=1}^M$, which estimate
320 the (differential) value of states under expert m . For theoretical analysis, we focus on linear
321 critics:
322

$$323 \quad V_{w_m}^{(m)}(s) = \psi(s)^\top w_m, \quad (6)$$

324 where $\psi : \mathcal{S} \rightarrow \mathbb{R}^d$ is a bounded feature map with $\|\psi(s)\| \leq 1$, and $w_m \in \mathbb{R}^d$ is the critic parameter
325 for expert m .
326

327 *Average-cost TD error and advantage estimate.* Our performance metric is average cost (Section 3.2).
328 Accordingly, we use the standard average-cost (relative-value) actor-critic surrogate based on a
329 centered TD error. For each expert m , we maintain an estimate $\eta^{(m)}$ of the average cost under that
330 expert, and define the per-expert TD error
331

$$332 \quad \delta_t^{(m)} \triangleq c_t - \bar{c}^{(m)} + V_{w_m}^{(m)}(s_{t+1}) - V_{w_m}^{(m)}(s_t). \quad (7)$$

333 We use $\tilde{A}_t^{(m)}$ as an advantage estimate and a common single-step choice is $\tilde{A}_t^{(m)} \approx \delta_t^{(m)}$.
334

335 3.4 System Instantiations

336 This subsection provides two instantiations of our problem setting.
337

338 *3.4.1 Instantiation A: Single-Queue System with Regime-Dependent Arrivals and Energy Prices.* We
339 instantiate the RS-MDP with a canonical single-server queueing system whose operating conditions
340 (workload intensity and energy price) vary across regimes. The system state is $s_t = (Q_t, x_t)$, where
341 $Q_t \in \mathbb{R}_+$ is the queue backlog and $x_t \in \mathcal{X}$ is an exogenous mode variable (e.g., workload phase,
342 channel condition, or server state).
343

344 Specifically, at each slot t , the agent chooses a service action $a_t \in \mathcal{A} \subseteq [0, \mu_{\max}]$. Conditioned on
 345 the latent regime $z_t = z$, arrivals $A_t^{(z)}$ are drawn and the queue evolves as

$$346 \quad 347 \quad Q_{t+1} = \left[Q_t + A_t^{(z_t)} - a_t \right]^+. \quad (8)$$

348 We model the exogenous process as regime-dependent Markov dynamics $x_{t+1} \sim \mathcal{F}^{(z_t)}(\cdot | x_t)$, and
 349 arrivals as a regime- and state-dependent distribution,
 350

$$351 \quad A_t^{(z_t)} \sim \mathcal{D}^{(z_t)}(\cdot | x_t), \quad (9)$$

352 e.g., Poisson arrivals with mean $\lambda^{(z)}(x_t)$. This captures workload phase shifts where both the
 353 transition law of x_t and the arrival intensity depend on the current regime. We consider a per-slot
 354 cost that penalizes backlog (delay proxy) and energy expenditure with a regime-dependent price:
 355

$$356 \quad c^{(z)}(Q, x, a) = wQ + \kappa^{(z)}a^2, \quad (10)$$

357 where $w > 0$ weights delay/backlog and $\kappa^{(z)} > 0$ is a regime-dependent energy/price coefficient
 358 (e.g., reflecting electricity price or carbon intensity). This model captures the canonical tradeoff: in
 359 high-price regimes, aggressive service is costly, whereas in low-price regimes, aggressive service
 360 is attractive for backlog reduction. Let $s = (Q, x)$ and $s' = (Q', x')$. Using (8)-(9), the regime- z
 361 transition kernel admits the factorization
 362

$$363 \quad P^{(z)}(s' | s, a) = \sum_{A \geq 0} \mathcal{D}^{(z)}(A | x) \cdot \mathcal{F}^{(z)}(x' | x) \cdot \mathbb{1}\{Q' = [Q + A - a]^+\}. \quad (11)$$

364 In this instantiation, regimes can alter (i) the arrival law $\mathcal{D}^{(z)}(\cdot | x)$, i.e., traffic intensity, (ii)
 365 the evolution of the exogenous mode $\mathcal{F}^{(z)}(\cdot | x)$ i.e., phase persistence, and (iii) the energy/price
 366 coefficient $\kappa^{(z)}$ in (10).

367 **3.4.2 Instantiation B: Downlink Wireless Scheduling with Regime-Dependent Channel Law.** We next
 368 instantiate the RS-MDP with a canonical downlink scheduling problem in a wireless base station
 369 serving d users. The system maintains per-user queues $Q_{t,i} \in \mathbb{R}_+$ for $i \in [d]$, and the wireless
 370 channel state at time t is denoted by $H_t \in \mathcal{H}$ (capturing fading and interference).

371 Specifically, the system state is $s_t = (Q_t, H_t)$, where $Q_t = (Q_{t,1}, \dots, Q_{t,d})$. The latent regime
 372 $z_t \in \mathcal{Z}$ captures operating conditions such as mobility/interference patterns. Conditioned on $z_t = z$,
 373 we model the channel as a regime-dependent Markov process $H_{t+1} \sim \mathcal{H}^{(z)}(\cdot | H_t)$, where $\mathcal{H}^{(z)}$
 374 can specialize to the i.i.d. case by dropping the conditioning. At each time, the scheduler selects one
 375 user $a_t \in \mathcal{A} \triangleq \{1, 2, \dots, d\}$ to serve. (Extensions to selecting rate vectors or multiple users per slot
 376 are standard and omitted for clarity.) User i receives exogenous arrivals $A_{t,i}^{(z_t)}$, potentially regime-
 377 dependent (e.g., demand phases), $A_{t,i}^{(z)} \sim \mathcal{D}_i^{(z)}(\cdot | H_t)$. If user i is scheduled, it receives service at an
 378 achievable rate $r_i(H_t; z_t)$, which can also depend on the regime (e.g., reflecting interference levels
 379 or mobility). The per-user queue update is
 380

$$381 \quad 382 \quad Q_{t+1,i} = \left[Q_{t,i} + A_{t,i}^{(z_t)} - \mathbb{1}\{a_t = i\} r_i(H_t; z_t) \right]^+, i \in [d]. \quad (12)$$

383 We consider a standard delay-power objective $c^{(z)}(Q, H, a) = \sum_{i=1}^d w_i Q_i + \lambda^{(z)} \text{Power}(a, H)$, where
 384 $w_i > 0$ are queue weights, $\text{Power}(a, H)$ is the transmit power incurred by serving user a under
 385 channel state H (e.g., due to adaptive modulation/coding or target rate constraints), and $\lambda^{(z)} > 0$ is
 386 a regime-dependent price coefficient that can encode time-varying energy prices or tighter power
 387 constraints in certain operating modes.

388 In this instantiation, regimes can correspond to (i) mobility/interference patterns that change
 389 the channel law $\mathcal{H}^{(z)}$ and the achievable rate functions $r_i(\cdot; z)$, and/or (ii) traffic demand phases
 390 that change the arrival laws $\{\mathcal{D}_i^{(z)}\}$ and the power price $\lambda^{(z)}$. Because both channel statistics and
 391

393 traffic intensities can shift across regimes, the scheduling policy that is optimal in one regime can
 394 be persistently misaligned in another.

395
 396 **Definition 1** (Strong stability [31]). The queue process $\{Q_t\}$ is strongly stable if

397
 398
$$\limsup_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|Q_t\|_1] < \infty. \quad (13)$$

 399

400 4 Impossibility Results: Regret Lower Bounds and Queue Instability

401 This section explains why regime switching fundamentally changes what can be achieved by
 402 *stationary* control rules. Even when each regime is individually stationary and admits a well-
 403 behaved optimal stationary policy, a single stationary policy can be *persistently misaligned* with
 404 at least one regime. The consequence is twofold: (i) a stationary policy can incur a *non-vanishing*
 405 average-cost gap relative to a regime-aware benchmark, and (ii) in queueing instantiations, regime
 406 mismatch can create sustained overload within long segments, leading to instability.
 407

408 4.1 Impossibility I: A Stationary Policy Can Have a Non-Vanishing Cost Gap

409 We construct a simple RS-MDP where two regimes require *opposite* actions on a frequently vis-
 410 ited state. Let $\mathcal{S} = \{s_0, s_1\}$ and $\mathcal{A} = \{a^+, a^-\}$. The state evolution is deterministic and regime-
 411 independent:
 412

413
$$s_{t+1} = s_1 \text{ if } s_t = s_0; \text{ and } s_{t+1} = s_0 \text{ if } s_t = s_1.$$

 414

415 Hence s_0 is visited exactly every other step, independent of the policy. The two regimes differ only
 416 in the cost at state s_0 :

- 417 • **Regime 1:** $c^{(1)}(s_0, a^+) = 0$, $c^{(1)}(s_0, a^-) = 1$, and $c^{(1)}(s_1, a) = 0$ for both actions.
 418 • **Regime 2:** $c^{(2)}(s_0, a^-) = 0$, $c^{(2)}(s_0, a^+) = 1$, and $c^{(2)}(s_1, a) = 0$ for both actions.
 419

420 Therefore, the optimal regime-aware benchmark policy π_t^* will simply choose a^+ at s_0 in regime 1
 421 and a^- at s_0 in regime 2, and achieve zero cost at all times.

422 **Theorem 1** (Linear regret for stationary policies under conflicting regimes). *For the above two-
 423 regime construction, for any stationary randomized policy π , there exists a piecewise-constant regime
 424 sequence $\{z_t\}$ such that*
 425

426
$$\text{Reg}(T) \geq \left\lfloor \frac{T}{2} \right\rfloor \cdot \max \{ \pi(a^+ | s_0), \pi(a^- | s_0) \} \geq \frac{T}{4} - \frac{1}{2}. \quad (14)$$

 427
 428

429 and hence $\text{Reg}(T) = \Omega(T)$ and $\text{Reg}(T)/T = \Omega(1)$.
 430

431 Theorem 1 isolates a fundamental obstruction: when two regimes require *conflicting* actions
 432 on a state that is visited with nontrivial frequency, any *single* stationary policy must randomize
 433 and therefore be persistently suboptimal for at least one regime. Notably, this lower bound holds
 434 even though the dynamics are completely benign (deterministic and regime-independent), so the
 435 failure is not caused by slow mixing or hard exploration. Instead, it is caused by *latent regime*
 436 *dependence of the optimal action*. Consequently, achieving sublinear tracking regret in RS-MDPs
 437 requires a mechanism that can represent and select among multiple specialized behaviors (e.g.,
 438 via mixtures) and an online adaptation/inference component (e.g., gating) that identifies which
 439 behavior is appropriate from the observation. We provide the proof sketch for Theorem 1 below,
 440 and please see Appendix C for the complete proof.

442 *Proof sketch.* Let $p \triangleq \pi(a^+ \mid s_0) \in [0, 1]$ for the stationary randomized policy π . Since the
 443 transition is deterministic and alternates between s_0 and s_1 regardless of the action, the state s_0 is
 444 visited exactly $\lfloor T/2 \rfloor$ times over horizon T . In regime 1, the expected cost incurred at each visit to
 445 s_0 equals $1 - p$ (because only action a^- is costly), while in regime 2 it equals p (because only action
 446 a^+ is costly). Costs at s_1 are always 0. Hence, if the entire horizon is spent in regime $z \in \{1, 2\}$, the
 447 expected cumulative cost of π is

$$448 \quad \mathbb{E} \left[\sum_{t=1}^T c^{(z)}(s_t, a_t) \right] = \left\lfloor \frac{T}{2} \right\rfloor \times [(1-p)\mathbb{1}\{z=1\} + p\mathbb{1}\{z=2\}].$$

451 The regime-aware benchmark π_t^* chooses the zero-cost action at s_0 for the active regime, so it
 452 achieves zero cumulative cost under either regime. Therefore, for the regime z that is worse for π
 453 ($z = 1$ if $1 - p \geq p$ and $z = 2$ otherwise),

$$454 \quad \text{Reg}(T) = \mathbb{E} \left[\sum_{t=1}^T c^{(z)}(s_t, a_t) \right] \geq \left\lfloor \frac{T}{2} \right\rfloor \cdot \max\{p, 1-p\} \geq \frac{T}{4} - \frac{1}{2}, \quad (15)$$

457 which implies $\text{Reg}(T) = \Omega(T)$ and $\text{Reg}(T)/T = \Omega(1)$. \square

458 The lower bound of regret in Theorem 1 is not an artifact of rapid switching. In fact, linear regret
 459 persists even when regimes are required to be piecewise constant with a prescribed minimum
 460 segment length L_{\min} .

461 **Theorem 2** (Linear regret under slow switching (minimum segment length)). *Fix any stationary*
 462 *randomized policy π and any $L_{\min} \geq 1$. For any horizon $T \geq L_{\min}$, there exists a piecewise-constant*
 463 *regime sequence $\{z_t\}_{t=1}^T$ satisfying the segment-length constraint L_{\min} such that $\text{Reg}(T) = \Omega(T)$. In*
 464 *particular, one may choose either:*

- 465 (1) **No switching:** $S_T = 0$ (a single regime for all t), in which case $L_{\min} = T$ and $\text{Reg}(T) \geq T/4 - 1/2$;
 466 or
 467 (2) **With switching:** an alternating regime sequence with segment length exactly L_{\min} , which yields

$$468 \quad \text{Reg}(T) \geq \left(\frac{1}{4} - \frac{1}{2L_{\min}} \right) T, \text{ for all } T \text{ that are multiples of } 2L_{\min}. \quad (16)$$

471 The construction in the proof highlights a key insight that *regime switching creates competing*
 472 *optima*. Even if the transition dynamics are benign and perfectly predictable, the optimal action
 473 can depend on an unobserved regime. Thus, achieving sublinear tracking regret requires either (i)
 474 explicit regime inference, or (ii) a policy class capable of representing multi-modal behavior (e.g.,
 475 mixtures) together with an online selection mechanism. We provide the proof sketch for Theorem 2
 476 below, and please see Appendix D for the complete proof.

478 *Proof sketch.* For (i), select the regime (1 or 2) that maximizes the stationary policy's per-step
 479 loss (as in Theorem 1). This produces $\text{Reg}(T) \geq T/4$ and trivially satisfies any minimum-segment
 480 constraint since there is only one segment.

481 For (ii), partition time into segments of length L_{\min} and alternate regimes 1, 2, 1, 2, ... Within any
 482 segment, the state s_0 is visited at least $\lfloor L_{\min}/2 \rfloor$ times (because the chain alternates deterministically),
 483 and each visit to s_0 incurs expected cost $1 - p$ in regime 1 and p in regime 2, where $p = \pi(a^+ \mid s_0)$.
 484 If there are $K = T/L_{\min}$ segments with K even, then exactly $K/2$ segments are in each regime, and
 485 the total expected cost is at least

$$486 \quad \frac{K}{2} \left\lfloor \frac{L_{\min}}{2} \right\rfloor (1 - p) + \frac{K}{2} \left\lfloor \frac{L_{\min}}{2} \right\rfloor p = \frac{K}{2} \left\lfloor \frac{L_{\min}}{2} \right\rfloor \geq \left(\frac{1}{4} - \frac{1}{2L_{\min}} \right) T.$$

489 The regime-aware benchmark achieves zero cost, hence (16) follows. \square

491 4.2 Impossibility II: Regime Mismatch Can Destroy Queue Stability

492 We now show that, in queueing systems, regime mismatch can have a qualitatively stronger effect
 493 than a constant cost suboptimality, i.e., persistent mismatch within a long regime segment creates a
 494 *service deficit* that accumulates over time, leading to sustained backlog growth and loss of stability.
 495 This motivates regime-adaptive scheduling and, in our instantiations, the inclusion of a stabilizing
 496 baseline expert to protect against inference errors.

497 Consider two queues $Q_{t,1}, Q_{t,2}$. In each slot, the agent chooses $a_t \in \{1, 2\}$ and serves one packet
 498 from queue a_t (if nonempty). Let arrivals be regime-dependent with means

- 499 • **Regime 1:** $\mathbb{E}[A_{t,1} | z_t = 1] = \lambda_H, \mathbb{E}[A_{t,2} | z_t = 1] = \lambda_L$,
- 500 • **Regime 2:** $\mathbb{E}[A_{t,1} | z_t = 2] = \lambda_L, \mathbb{E}[A_{t,2} | z_t = 2] = \lambda_H$,

501 where $\lambda_H \in (1/2, 1)$ and $\lambda_L > 0$ is small. We focus on stationary randomized *priority* policies that
 502 serve queue 1 with a fixed probability $p \in [0, 1]$ (and queue 2 otherwise), independent of state.
 503

504 **Theorem 3** (No fixed randomized priority stabilizes both regimes). *There exist $\lambda_H \in (1/2, 1)$ and
 505 sufficiently small $\lambda_L > 0$ such that:*

- 506 (1) (Per-regime stabilizability) *For each fixed regime $z \in \{1, 2\}$, there exists a stationary policy that
 507 stabilizes the two-queue system when the regime is held fixed at z .*
- 508 (2) (Global impossibility for fixed priorities) *No stationary randomized priority policy that serves
 509 queue 1 with a fixed parameter $p \in [0, 1]$ stabilizes the system under regime switching when
 510 regimes persist for sufficiently long contiguous periods.*

511 Theorem 3 isolates a *structural incompatibility*. Specifically, under regime 1, stability requires
 512 devoting a large service fraction to queue 1, whereas under regime 2 it requires devoting a large
 513 fraction to queue 2. When $\lambda_H > 1/2$, these requirements cannot be satisfied simultaneously by any
 514 fixed service split $(p, 1 - p)$. Unlike regret gaps in cost-only objectives, a queueing mismatch is
 515 *state-amplifying*: once a queue becomes overloaded in a regime, the backlog accumulates and cannot
 516 be instantaneously eliminated after the regime changes. This is precisely why regime adaptivity
 517 and stability-aware safeguards (e.g., a safe expert or drift-based guardrails) matter in systems. We
 518 provide the proof sketch for Theorem 3 below, and please see Appendix E for the complete proof.
 519

520 *Proof sketch.* A fixed- p policy allocates long-run service fractions $(p, 1 - p)$. In regime 1, queue
 521 1 is the heavy queue and stability requires $p > \lambda_H$ (up to an arbitrarily small slack). In regime 2,
 522 queue 2 is the heavy queue and stability requires $1 - p > \lambda_H$, i.e., $p < 1 - \lambda_H$. When $\lambda_H > 1/2$, the
 523 inequalities $p > \lambda_H$ and $p < 1 - \lambda_H$ cannot both hold. Therefore, for any fixed p , there exists a
 524 regime in which the heavy queue has a strict service deficit; if that regime persists for long intervals,
 525 backlog grows without bound, violating any strong stability notion. \square

526 The above incompatibility implies not only instability but also an explicit *linear growth* of backlog
 527 within a long segment of the “bad” regime. This result connects directly to our piecewise-constant
 528 switching model and clarifies why slow switching does not rescue fixed stationary priorities.

529 **Theorem 4** (Backlog grows linearly with L_{\min} under slow switching). *Fix any stationary randomized
 530 priority policy with parameter $p \in [0, 1]$. Choose $\lambda_H \in (1/2, 1)$ and sufficiently small $\lambda_L > 0$ as in
 531 Theorem 3. Then there exists a piecewise-constant regime sequence satisfying the minimum segment
 532 length constraint L_{\min} such that, for infinitely many regime-segment endpoints t ,*

$$534 \mathbb{E}[Q_{t,1} + Q_{t,2}] \geq \Omega(L_{\min}). \quad (17)$$

535 *More concretely, letting $\delta(p) \triangleq \lambda_H - \max\{p, 1 - p\} > 0$, there exists a regime segment of length L_{\min}
 536 starting at some t_0 such that*

$$537 538 \mathbb{E}[Q_{t_0+L_{\min}, i^*} - Q_{t_0, i^*}] \geq \delta(p) L_{\min} - O(1), \quad (18)$$

540 where $i^* \in \{1, 2\}$ is the heavy queue in that segment.

541 Theorem 4 quantifies the compounding effect of mismatch. Specifically, in a bad regime segment
 542 of length L_{\min} , the overloaded queue accumulates at least $\Theta(L_{\min})$ additional backlog in expectation.
 543 Hence, even if regime switches are infrequent (large L_{\min}), fixed stationary priorities are not merely
 544 suboptimal. They can be *unsafe* in the sense of creating large transient backlogs that break stability
 545 objectives. This directly motivates two design principles used later: (i) *fast adaptation* after a
 546 detected switch (via gating/expert selection), and (ii) *stability protection* when the regime inference
 547 is uncertain (via a stabilizing baseline expert with enforced minimum usage). We provide the proof
 548 sketch for Theorem 4 below, and please see Appendix F for the complete proof.

549 *Proof sketch.* Fix $p \in [0, 1]$ and define $\delta(p) \triangleq \lambda_H - \min\{p, 1 - p\} > 0$, which is positive since
 550 $\lambda_H > 1/2$ implies $\min\{p, 1 - p\} \leq 1/2$. Choose the “bad” regime so that the *heavy* queue is the
 551 one that the fixed- p policy serves *less often*: if $p \leq 1/2$, use regime 1 (queue 1 is heavy); otherwise
 552 use regime 2 (queue 2 is heavy). Let $i^* \in \{1, 2\}$ denote the heavy queue in this bad regime, and
 553 consider a regime segment $[t_0, t_0 + L_{\min} - 1]$ during which the bad regime persists. In each slot of
 554 this segment, queue i^* has expected arrival rate λ_H . Under the fixed- p priority rule, the probability
 555 of selecting the heavy queue i^* is exactly $\min\{p, 1 - p\}$ (by construction of the bad regime). Hence,
 556 whenever $Q_{t,i^*} > 0$, the expected service (departure) from queue i^* in that slot is $\min\{p, 1 - p\}$, and
 557 the one-step conditional drift satisfies
 558

$$559 \mathbb{E} [Q_{t+1,i^*} - Q_{t,i^*} \mid Q_{t,i^*} > 0] \geq \lambda_H - \min\{p, 1 - p\} = \delta(p). \quad (19)$$

560 Summing these positive drifts over the L_{\min} slots yields an expected backlog increase on the
 561 order of $\delta(p)L_{\min}$, up to an $O(1)$ boundary term accounting for possible emptiness at the very
 562 beginning of the segment and the $[\cdot]^+$ truncation. Therefore, at the end of such a bad segment,
 563 $\mathbb{E}[Q_{t_0+L_{\min},i^*} - Q_{t_0,i^*}] \geq \delta(p)L_{\min} - O(1)$, proving the stated linear-in- L_{\min} growth. Repeating such
 564 bad segments infinitely often (consistent with the piecewise-constant switching model) forces
 565 arbitrarily large expected backlog, precluding strong stability. \square

566 Together, Theorems 3-4 show that in queueing systems, regime switching can turn a seemingly
 567 mild modeling change into a sharp stability challenge. Fixed stationary priorities are incompatible
 568 with regimes that swap the identity of the bottleneck queue. This justifies regime-adaptive control
 569 architectures and stability-aware safeguards in RL.

570 5 Algorithm Design: Regime-Aware Mixture-of-Experts Actor-Critic with Safety 571 Projection

572 Our goal is to achieve sublinear tracking regret in RS-MDPs while maintaining stability in queueing
 573 instantiations. Impossibility I shows that a *single* stationary behavior can have an $\Omega(1)$ per-step
 574 gap under conflicting regimes, hence we must represent multiple specialized behaviors and *select*
 575 among them online. Impossibility II further shows that, in queueing systems, persistent regime
 576 mismatch can create a sustained service deficit and destroy stability, hence the selection mechanism
 577 must be robust to inference errors and exploration.

578 We propose *Regime-Aware Mixture-of-Experts Actor-Critic* (RA-MoE-AC) with Safety Projection
 579 (see Algorithm 1), which combines four tightly coupled components, including (i) M expert actors
 580 $\{\pi_{\phi_m}^{(m)}\}_{m=1}^M$ to represent regime-dependent behaviors, (ii) a state-dependent gating rule $g_{\theta}(\cdot \mid s)$ to
 581 perform online expert selection for regime inference, (iii) per-expert critics $\{V_{w_m}^{(m)}\}$ (and average-
 582 cost estimates $\{\bar{c}^{(m)}\}$) to generate low-variance advantage surrogates, and (iv) a *safety projection*
 583 that enforces a minimum selection probability on a stabilizing expert in queueing instantiations.

Algorithm 1 Regime-Aware MoE Actor-Critic with Safety Projection (RA-MoE-AC)

589 **Require:** Experts $\{\pi_{\phi_m}^{(m)}\}_{m=1}^M$, gating $g_\theta(\cdot \mid s)$, critics $\{V_{w_m}^{(m)}\}_{m=1}^M$, stepsizes $\{\beta_t, \alpha_t, \eta_t, \rho_t\}$, safe
 590 expert m_{safe} , minimum probability $p_{\min} \in (0, 1)$, clipping constant C .
 591
 592 1: Initialize $\phi_m^{(1)}, w_m^{(1)}, \bar{c}^{(m,1)}$ for all m , and $\theta^{(1)}$.
 593 2: **for** $t = 1, 2, \dots, T$ **do**
 594 3: Observe s_t
 595 4: Compute gate $g_t(m) \leftarrow g_{\theta^{(t)}}(m \mid s_t)$ for all m
 596 5: **Safety projection:** $\tilde{g}_t(\cdot) \leftarrow \Pi(g_t(\cdot); \tilde{g}_t(m_{\text{safe}}) \geq p_{\min})$
 597 6: Sample expert $m_t \sim \tilde{g}_t(\cdot)$
 598 7: Sample action $a_t \sim \pi_{\phi_m^{(t)}}^{(m_t)}(\cdot \mid s_t)$
 599 8: Execute action a_t , and observe cost c_t and next state s_{t+1}
 600 9: **(Selected expert) average-cost update:** $\bar{c}^{(m_t, t+1)} \leftarrow (1 - \rho_t) \bar{c}^{(m_t, t)} + \rho_t c_t$
 601 10: **(Selected expert) TD residual:** $\delta_t^{(m_t)} \leftarrow c_t - \bar{c}^{(m_t, t)} + V_{w_m^{(t)}}^{(m_t)}(s_{t+1}) - V_{w_m^{(t)}}^{(m_t)}(s_t)$
 602 11: **Critic (fast timescale):** $w_m^{(t+1)} \leftarrow w_m^{(t)} - \beta_t \delta_t^{(m_t)} \nabla_w V_w^{(m_t)}(s_t) \Big|_{w=w_m^{(t)}}$
 603 12: **Actor (slow timescale):** $\phi_m^{(t+1)} \leftarrow \phi_m^{(t)} - \alpha_t \delta_t^{(m_t)} \nabla_\phi \log \pi_{\phi}^{(m_t)}(a_t \mid s_t) \Big|_{\phi=\phi_m^{(t)}}$
 604 13: **Gating loss:**
 605 14: **if** full information **then**
 606 15: Compute $\delta_t^{(m)}$ for all m via (20) and set $\hat{\ell}_t(m) \leftarrow \ell_t(m)$ via (21)
 607 16: **else**
 608 17: Set $\hat{\ell}_t(\cdot)$ via the bandit estimator (22)
 609 18: **end if**
 610 19: **Gating update:** update $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta_t \nabla_\theta \left(\sum_{m=1}^M g_\theta(m \mid s_t) \hat{\ell}_t(m) \right) \Big|_{\theta=\theta^{(t)}}$
 611 20: **end for**
 612 21: **return** mixture policy $\pi_{\theta, \phi}$ in (5)

5.1 Technical Difficulties and Design Ideas

618 Before formally introducing Algorithm 1, we highlight the core technical difficulties created by
 619 regime switching and explain the corresponding design ideas implemented in Algorithm 1.
 620

621 *D1 (critic drift under switching): Bellman targets change within the horizon.* When z_t switches,
 622 both the stationary distribution and the (average-cost) Bellman equations change. As a result, a
 623 critic trained on one segment can be systematically biased on the next, which then corrupts actor
 624 gradients. To address this, we maintain per-expert critics and update the selected expert critic on
 625 the fastest timescale (Algorithm 1, TD residual and critic update; Lines 9–11). Under slow switching
 626 and per-regime mixing, these updates track the segment-local value surrogate.

627 *D2 (latent regime inference): the agent must select the right expert without observing z_t .* Sublinear
 628 tracking regret requires a mechanism that quickly concentrates probability on the expert most
 629 compatible with the current regime, even though z_t is hidden. To address this, we treat gating
 630 as online learning driven by a bounded mismatch loss based on TD residuals (Algorithm 1, loss
 631 computation and gate update; Lines 13–18). This directly operationalizes “regime inference” from
 632 observable trajectories.

633 *D3 (coupled learning): gate quality depends on experts and expert learning depends on the gate.*
 634 If the gate collapses early, non-selected experts stop receiving samples and cannot improve. In

638 addition, if experts are inaccurate, the gate receives noisy mismatch signals and may oscillate
 639 after switches. To address this, we develop (i) timescale separation $\beta_t \gg \eta_t \gg \alpha_t$ (critic fast, gate
 640 intermediate, actor slow), (ii) clipped gating losses to control variance (Line 13), and (iii) an explicit
 641 sampling floor via safety projection (Line 5), which prevents complete starvation of the stabilizing
 642 expert.

643 *D4 (stability under inference errors): wrong expert selection can be catastrophic in queues.* Impossi-
 644 bility II shows mismatch can create a sustained service deficit and backlog growth within a long
 645 segment, so stability cannot be left to “emerge” from regret minimization alone. To address this,
 646 we embed a known stabilizing baseline π_{safe} as expert m_{safe} and enforce $\tilde{g}_t(m_{\text{safe}} \mid s_t) \geq p_{\min}$ at
 647 every time (Algorithm 1, safety projection; Line 5). This provides a direct handle for Lyapunov-drift
 648 arguments in the stability analysis.
 649

650 *D5 (switching overhead): the gate must react fast after a regime change.* Even under slow switching,
 651 the post-switch transient dominates performance if the gate re-concentrates too slowly. To address
 652 this, gate stepsize η_t is chosen to balance noise and responsiveness (Line 18), and the TD-residual-
 653 based loss naturally spikes right after a switch, accelerating reweighting.
 654

655 5.2 Main algorithm: RA-MoE-AC with safety projection

656 We present a regime-aware MoE actor-critic algorithm (with safety projection for queue stability).
 657 For each expert m , we maintain actor parameters ϕ_m , critic parameters w_m for a differential value
 658 approximation $V_{w_m}^{(m)}(s)$, and an average-cost estimate $\bar{c}^{(m)}$. At each time t , the gate produces a
 659 distribution over experts, and then we enforce safety and sample an expert to act. Given transition
 660 (s_t, a_t, c_t, s_{t+1}) , we define the average-cost TD residual for expert m by

$$661 \quad \delta_t^{(m)} \triangleq c_t - \bar{c}^{(m)} + V_{w_m}^{(m)}(s_{t+1}) - V_{w_m}^{(m)}(s_t). \quad (20)$$

663 We use the clipped squared residual as a bounded mismatch loss, i.e.,

$$664 \quad \ell_t(m) \triangleq \text{clip}((\delta_t^{(m)})^2, 0, C), \quad (21)$$

666 so that experts whose critics are more Bellman-consistent on the current trajectory receive lower
 667 loss and therefore higher gate weight. When M is small, we compute $\delta_t^{(m)}$ (and thus $\ell_t(m)$) for
 668 all m and update the gate with full-information losses (Lines 13–14). However, when M is large,
 669 we can update using only the selected expert m_t via an unbiased importance-weighted estimator
 670 (Lines 15–17)

$$671 \quad \hat{\ell}_t(m) \triangleq \frac{\mathbb{1}\{m = m_t\}}{\tilde{g}_t(m_t \mid s_t)} \text{clip}((\delta_t^{(m_t)})^2, 0, C), \quad (22)$$

673 Our main theorems later analyze the full-information gate. However, the bandit variant follows
 674 standard EXP3-style arguments with the usual \sqrt{M} dependence. Moreover, for queueing-system
 675 instantiations, we assume there exists a known stabilizing baseline policy π_{safe} (e.g., a MaxWeight-
 676 type rule) that ensures a Lyapunov drift condition for the queue component Q_t , implying positive
 677 recurrence (strong stability) of the induced queueing process. This baseline can be embedded as a
 678 dedicated “safe expert” in the mixture, and our algorithm enforces a minimum selection probability
 679 for it to guarantee stability. Specifically, our algorithm includes four components addressing the
 680 difficulties discussed in Section 5.1.
 681

682 *C1 (Lines 3–8): gating for safe sampling.* The gate $g_{\theta^{(t)}}(\cdot \mid s_t)$ converts the latent-regime problem
 683 into online expert selection. The safety projection (Line 5) enforces $\tilde{g}_t(m_{\text{safe}}) \geq p_{\min}$, guaranteeing
 684 that stabilizing actions remain available even when regime inference is wrong. Sampling $m_t \sim \tilde{g}_t$
 685 (Line 6) implements the mode-selection decision required to circumvent Impossibility I. Then,
 686

687 the algorithm acts using the selected expert policy (Line 7) and observes (c_t, s_{t+1}) (Line 8). Under
 688 regime switching, this single transition is the only information available.

689 *C2 (Lines 9–11): fast critic tracking produces a usable advantage signal.* Line 9 updates $\bar{c}^{(m_t)}$ to
 690 maintain a running estimate of the expert's average cost. Line 10 forms the centered TD residual
 691 $\delta_t^{(m_t)}$, which is an advantage surrogate for the actor and a mismatch certificate for the gate. Line 11
 692 updates w_{m_t} on the fast timescale, reducing critic drift within a regime segment (D1).

693 *C3 (Line 12): slow actor update avoids chasing switching transients.* Line 12 performs the policy-
 694 gradient step using $\delta_t^{(m_t)}$ as the advantage estimate. Keeping α_t smaller than the gate step-sizes
 695 prevents the actor from overreacting to the immediate post-switch transient, which is critical when
 696 L_{\min} is only moderately larger than the mixing time (D3–D5).

697 *C4 (Lines 13–18): gate update reweights experts using bounded mismatch losses.* Lines 13–17 define
 698 $\hat{\ell}_t(\cdot)$ either from full-information losses (small M) or from the bandit estimator (large M). Line 18
 699 then updates θ to reduce the expected mismatch under the gate at state s_t . After a regime change,
 700 TD residuals for mismatched experts spike, so the gate update naturally re-concentrates on the
 701 best expert for the new segment (D2, D5), while clipping controls variance and supports finite-time
 702 analysis.

703 6 Theoretical Analysis

704 This section states finite-time guarantees for Algorithm 1 that are consistent with: (i) the RS-MDP
 705 model and tracking-regret metric in Section 3, (ii) the necessity of regime adaptivity highlighted
 706 by the impossibility results in Section 4, and (iii) the MoE actor-critic with TD-residual-driven
 707 online gating and safety projection in Section 5. We emphasize *switching-aware* bounds that scale
 708 explicitly with the number of regime switches S_T , the minimum segment length L_{\min} , and the
 709 per-regime mixing time t_{mix} .

710 6.1 Preliminaries: Two-Level Benchmarks, Regularity, and Mixing

711 Recall the regime process is piecewise constant, i.e., there exist switch times $1 = \tau_0 < \tau_1 < \dots <$
 712 $\tau_{S_T} \leq T$ such that the regime is constant on each segment $\mathcal{I}_k \triangleq \{\tau_{k-1}, \dots, \tau_k - 1\}$, $k = 1, \dots, S_T + 1$.
 713 Let z_k denote the regime on \mathcal{I}_k , and let $L_k \triangleq |\mathcal{I}_k|$, so that $L_{\min} = \min_k L_k$. Our tracking regret $\text{Reg}(T)$
 714 in (4) benchmarks against the regime-optimal stationary policy $\pi^{*,(z_t)}$, which may lie outside the
 715 MoE expert families. To separate *learnability within the class* from *modeling mismatch*, we introduce
 716 an intermediate, in-class comparator. For each expert $m \in [M]$, let $\Pi^{(m)} \triangleq \{\pi_{\phi}^{(m)} : \phi \in \Phi_m\}$ denote
 717 its policy family. Define the *in-class per-regime oracle* (breaking ties arbitrarily) by

$$718 (m^{\text{ic}}(z), \phi^{\text{ic}}(z)) \in \arg \min_{m \in [M], \phi \in \Phi_m} J^{(z)} \left(\pi_{\phi}^{(m)} \right) \text{ and } \pi^{\text{ic},(z)} \triangleq \pi_{\phi^{\text{ic}}(z)}^{(m^{\text{ic}}(z))}. \quad (23)$$

719 We quantify the unavoidable policy-class mismatch by the per-regime approximation gap

$$720 \text{Approx}_{\pi} \triangleq \max_{z \in \mathcal{Z}} \left(J^{(z)} \left(\pi^{\text{ic},(z)} \right) - J^{(z)} \left(\pi^{*,(z)} \right) \right) \geq 0. \quad (24)$$

721 Later, our regret bound naturally decomposes as $\text{Reg}(T) \leq \text{learning regret for } \pi^{\text{ic},(z_t)} + T \text{Approx}_{\pi}$,
 722 so Approx_{π} captures the portion that no algorithm can remove without enlarging the expert class.

723 *Regularity assumptions.* We use two standard mild technical conditions to control stochastic-
 724 gradient magnitudes and to ensure the critics are well-posed.

Assumption 1 (Bounded score functions). For the policy class under consideration, we assume bounded score functions, i.e., there exist constants $G_\pi, G_g < \infty$ such that for all $m \in [M]$,

$$\|\nabla_{\phi_m} \log \pi_{\phi_m}^{(m)}(a | s)\| \leq G_\pi \text{ and } \|\nabla_\theta \log g_\theta(m | s)\| \leq G_g. \quad (25)$$

Assumption 2 (Critic realizability). Fix $z \in \mathcal{Z}$ and an expert policy $\pi_{\phi_m}^{(m)}$. Let $\mu^{(z,m)}$ be the stationary distribution of the induced Markov chain under $(P^{(z)}, \pi_{\phi_m}^{(m)})$, and define $\Sigma^{(z,m)} \triangleq \mathbb{E}_{s \sim \mu^{(z,m)}} [\psi(s)\psi(s)^\top]$. Assume $\Sigma^{(z,m)} \succeq \lambda_{\min} I$ uniformly over z, m, ϕ_m for some $\lambda_{\min} > 0$. Moreover, the average-cost projected Bellman equation admits a unique fixed point $w^{*,(z,m)}(\phi_m)$ in the linear class, up to an additive constant in the differential value.

Remark 1. Assumption 1 holds for standard softmax/gated-softmax parameterizations with bounded features and parameters, e.g., enforced via projection onto a compact set, ensuring uniformly bounded stochastic gradients. Assumption 2 is a standard identifiability condition. It makes the linear TD normal equations well-conditioned under each (z, m) , so the critic target (projected Bellman fixed point) is well-defined and trackable.

Mixing as a regime-wise systems property. The property below formalizes that, within any regime and under any stationary policy, the induced Markov chain forgets its initial condition quickly.

Definition 2 (Uniform geometric mixing within regimes). For every regime $z \in \mathcal{Z}$ and every stationary randomized policy $\pi \in \Pi_{\text{stat}}$, let $P_\pi^{(z)}$ be the policy-induced Markov kernel on \mathcal{S} ,

$$P_\pi^{(z)}(s' | s) \triangleq \sum_{a \in \mathcal{A}} \pi(a | s) P^{(z)}(s' | s, a). \quad (26)$$

We say the RS-MDP satisfies uniform geometric mixing within regimes if, for each (z, π) , the Markov chain with kernel $P_\pi^{(z)}$ admits a unique stationary distribution $\mu_\pi^{(z)}$, and there exist constants $C_{\text{mix}} \geq 1$ and $\rho \in (0, 1)$, independent of (z, π) , such that for all $s \in \mathcal{S}$ and all $t \geq 0$,

$$\text{TV}\left((P_\pi^{(z)})^t(s, \cdot), \mu_\pi^{(z)}\right) \leq C_{\text{mix}} \rho^t, \quad (27)$$

where $(P_\pi^{(z)})^t$ is the t -step kernel, i.e., the t -fold composition of $P_\pi^{(z)}$.

Remark 2. Geometric mixing is a standard consequence of mild ‘‘randomization’’ and ‘‘connectivity’’ conditions, which are often natural in systems models. A concrete sufficient condition is a uniform Doeblin minorization, i.e., if there exist $\alpha \in (0, 1)$ and $v \in \Delta(\mathcal{S})$ such that $P^{(z)}(\cdot | s, a) \geq \alpha v(\cdot)$ for all z, s, a , then $P_\pi^{(z)}(\cdot | s) \geq \alpha v(\cdot)$ for all z, π, s . Writing $P_\pi^{(z)} = \alpha v^\top + (1 - \alpha)\tilde{P}$, one obtains the TV contraction $\text{TV}(\mu_\pi^{(z)}, \mu' P_\pi^{(z)}) \leq (1 - \alpha)\text{TV}(\mu, \mu')$, which yields (27) with $C_{\text{mix}} = 1$ and $\rho = 1 - \alpha$. In queueing/wireless models, analogous geometric mixing follows from a standard ‘‘drift-to-a-small-set + minorization’’ argument, i.e., exogenous randomness of arrivals and/or channels provides noise, while a stabilizing and exploratory action floor ensures recurrent visits to a small set, together implying geometric ergodicity of the controlled chain under each frozen (z, π) .

The property in Definition 2 indicates that burn-in bias decays geometrically (see Lemma 1).

Lemma 1 (Per-regime mixing and burn-in bias). Fix a regime z and any stationary policy $\pi \in \Pi_{\text{stat}}$, and let $\mu_\pi^{(z)}$ be the stationary distribution of $P_\pi^{(z)}$. Then, for any measurable $f : \mathcal{S} \rightarrow [-1, 1]$, any initial state $s \in \mathcal{S}$, and any $t \geq 1$, we have

$$\left| \mathbb{E}[f(s_t) | s_1 = s] - \mathbb{E}_{s \sim \mu_\pi^{(z)}} [f(s)] \right| \leq 2C_{\text{mix}} \rho^{t-1}. \quad (28)$$

In particular, after $t \geq 1 + \left\lceil \frac{\log(\epsilon/C_{\text{mix}})}{\log \rho} \right\rceil$, the bias is at most 2ϵ .

Lemma 1 shows that within any regime z and under any stationary policy π , the distribution of the state s_t converges geometrically fast to the stationary distribution $\mu_\pi^{(z)}$. Consequently, time samples collected after t_{mix} steps are approximately stationary. This lemma is the technical bridge that allows us to treat each regime segment as “nearly stationary” after a short transient. See Appendix G for the proof.

6.2 Main Results: Regime-Aware Tracking and Stability

This subsection formalizes the main theoretical guarantees for RA-MoE-AC. As motivated by the impossibility results (Section 4), sublinear tracking regret requires both a multi-modal policy class (experts) and an online expert-selection mechanism (gate). Our analysis follows a modular pipeline from mixing, critic, to gating regret, regret decomposition, until the final main tracking bound, plus a separate stability guarantee under safety projection.

Lemma 2 (Tracking of $\bar{c}^{(m)}$ and w_m within a fixed regime). *Consider a segment \mathcal{I}_k of length L_k with fixed regime z_k . Under Assumption 1 and Assumption 2, there exists a burn-in $b = \Theta(t_{\text{mix}})$, such that for all $t \in \mathcal{I}_k$ with $t \geq \tau_{k-1} + b$ and all experts $m \in [M]$, the full-information iterates satisfy*

$$\mathbb{E} \left[|\bar{c}^{(m,t)} - J^{(z_k)}(\pi_{\phi_m^{(t)}}^{(m)})| \right] \leq O(\rho_{\max}) + O(\beta_{\max}) + O \left(\sup_{u \in \mathcal{I}_k} \frac{\alpha_u}{\beta_u} \right) + O \left(C_{\text{mix}} \rho^b \right), \quad (29)$$

$$\mathbb{E} \left[\|w_m^{(t)} - w^{*,(z_k,m)}(\phi_m^{(t)})\| \right] \leq O(\beta_{\max}) + O \left(\sup_{u \in \mathcal{I}_k} \frac{\alpha_u}{\beta_u} \right) + O \left(C_{\text{mix}} \rho^b \right), \quad (30)$$

where $\beta_{\max} \triangleq \sup_{u \in \mathcal{I}_k} \beta_u$, $\rho_{\max} \triangleq \sup_{u \in \mathcal{I}_k} \rho_u$, and constants depend only on $(c_{\max}, \lambda_{\min}, C_{\text{mix}}, \rho)$.

Lemma 2 shows that within any regime segment, after a short burn-in, each expert’s critic behaves as if it were trained on approximately stationary samples from that regime. The dominant penalty is the standard timescale-separation term $\sup(\alpha_t/\beta_t)$. If the actor moves slowly relative to the critic, value surrogates can track quickly and do not corrupt the gate/actor updates. We provide the proof sketch for Lemma 2 below, and please see Appendix H for the complete proof.

Proof sketch. Fix (z_k, m) and ϕ_m over a short window. Under Definition 2 and Lemma 1, the Markov noise becomes nearly stationary after $b = \Theta(t_{\text{mix}})$, so the TD recursion is close to its mean ODE (projected Bellman equation). Assumption 2 gives well-posedness and uniform conditioning, yielding contraction of the mean dynamics. Finite-time stochastic approximation bounds for linear TD with Markovian noise then give an $O(\beta_{\max})$ term, while the slow drift of ϕ_m contributes $O(\sup \alpha/\beta)$. The baseline estimator $\bar{c}^{(m)}$ is a standard Robbins-Monro average-cost estimator, producing an analogous $O(\rho_{\max})$ term. The $O(C_{\text{mix}} \rho^b)$ term is exactly the burn-in bias from Lemma 1. \square

Lemma 3 (Gate regret against a piecewise-constant in-class selector). *Let $\tilde{g}_t(\cdot)$ be the post-projection distribution. For the comparator sequence $m_t^{\text{ic}} \equiv m_k^{\text{ic}}$ for $t \in \mathcal{I}_k$, we have*

$$\sum_{t=1}^T \sum_{m=1}^M \tilde{g}_t(m) \ell_t(m) - \sum_{t=1}^T \ell_t(m_t^{\text{ic}}) \leq O \left(C \sqrt{T \log M} + C S_T \log M \right). \quad (31)$$

Lemma 3 shows that the gate pays the standard $\sqrt{T \log M}$ learning term, plus a switching overhead proportional to $S_T \log M$ that accounts for re-concentrating after regime changes. This is the precise formalization of the “switching overhead” discussed in design idea D2/D5. We provide the proof sketch for Lemma 3 below, and please see Appendix I for the complete proof.

Proof sketch. Fixed-share Hedge is a standard reduction from switching comparators to a mixture of restarted Hedge instances. One obtains a dynamic-regret bound against piecewise-constant expert sequences with S_T switches, i.e., a $\sqrt{T \log M}$ term from within-segment learning plus an additive $S_T \log M$ term from the share/restart mechanism. Scaling by the loss range C yields (31). \square

834 **Lemma 4** (Regret Decomposition). *Let $\text{Reg}(T)$ be the tracking regret in (4). Under bounded costs,*
 835 *we have*

836
$$\text{Reg}(T) \leq \kappa_1 \text{Reg}_{\text{gate}}(T) + \text{Reg}_{\text{AC}}(T) + \text{Reg}_{\text{switch}}(T) + T \cdot \text{Approx}_{\pi} + T \cdot \text{Approx}_V, \quad (32)$$

838 *where*

- 839 • $\text{Reg}_{\text{gate}}(T) \triangleq \sum_{t=1}^T \sum_m \tilde{g}_t(m) \ell_t(m) - \sum_{t=1}^T \ell_t(m_t^{\text{ic}})$ is controlled by Lemma 3;
 840 • $\text{Reg}_{\text{AC}}(T)$ is the within-expert learning error caused by imperfect advantage surrogates and slow
 841 actor updates, controlled by Lemma 2 and standard average-cost policy-gradient arguments;
 842 • $\text{Reg}_{\text{switch}}(T)$ is the transient cost incurred in the first $O(t_{\text{mix}})$ steps after each switch, before the state
 843 distribution re-mixes and critic/baseline estimates re-center;
 844 • Approx_{π} is the policy-class gap defined in (24);
 845 • Approx_V is the critic function-approximation bias.

846 Lemma 4 pins each term in the final bound to a concrete design component, including gating
 847 controls Reg_{gate} , per-expert critics control Reg_{AC} , and mixing controls $\text{Reg}_{\text{switch}}$. The impossibility
 848 results imply that without a mechanism reducing Reg_{gate} , i.e., the multi-modal representation and
 849 selection, one cannot generally achieve $\text{Reg}(T) = o(T)$. We provide the proof sketch for Lemma 4
 850 below, and please see Appendix J for the complete proof.

851 *Proof sketch.* Add and subtract the in-class selector and the regime-optimal benchmark:

852
$$\text{Reg}(T) = \underbrace{(C_T(\pi) - C_T(\text{in-class selector}))}_{\text{learn+gate+transients}} + \underbrace{(C_T(\text{in-class selector}) - C_T^*)}_{\leq T \text{Approx}_{\pi}}. \quad (33)$$

853 The first bracket is controlled by calibrating instantaneous excess cost by TD-losses, bounding
 854 gate dynamic regret, bounding critic/baseline tracking error within segments, and charging at
 855 most $c_{\max} t_{\text{mix}}$ per switch for burn-in/mixing transients. The critic approximation bias contributes
 856 $T \text{Approx}_V$. \square

857 **Theorem 5** (Tracking regret for RA-MoE-AC). *Under Assumption 1 and Assumption 2, the full-*
 858 *information RA-MoE-AC variant satisfies*

859
$$\text{Reg}(T) \leq O\left(\kappa_1 C \sqrt{T \log M} + \kappa_1 C S_T \log M\right) + \tilde{O}\left(\sqrt{T}\right) + O(c_{\max} S_T t_{\text{mix}}) + T(\text{Approx}_{\pi} + \text{Approx}_V). \quad (34)$$

860 In particular, if $S_T = o(T)$ and $\text{Approx}_{\pi} + \text{Approx}_V = o(1)$, then $\text{Reg}(T)/T \rightarrow 0$.

861 The bound in Theorem 5 decomposes into four important parts: (i) regime inference cost
 862 $\sqrt{T \log M} + S_T \log M$; (ii) within-regime learning cost that is sublinear in T under timescale sepa-
 863 ration; (iii) post-switch mixing/transient cost t_{mix} per switch; (iv) irreducible approximation bias
 864 from policy classes. This matches the qualitative lessons of Impossibility I that without multiple
 865 experts and a gate, the selection term cannot be sublinear in general. We provide the proof sketch
 866 for Theorem 5 below, and please see Appendix K for the complete proof.

867 *Proof sketch.* Start from Lemma 4. Bound $\text{Reg}_{\text{gate}}(T)$ by Lemma 3. Bound $\text{Reg}_{\text{AC}}(T)$ using Lemma 2
 868 to control baseline/critic tracking error and standard average-cost actor-critic analysis to convert
 869 advantage estimation error into cumulative performance loss, yielding a $\tilde{O}(\sqrt{T})$ term under the
 870 two-timescale stepsizes. Bound $\text{Reg}_{\text{switch}}(T)$ by charging at most $O(c_{\max} t_{\text{mix}})$ per switch (burn-in
 871 until near-stationarity). Add approximation terms $T \text{Approx}_{\pi}$ and $T \text{Approx}_V$. \square

872 *Remark 3* (selected-expert-only variants). If one updates critics/actors only for the sampled expert
 873 and/or uses bandit losses (e.g., EXP3-style importance weighting), then (34) holds with the standard

additional factors, either an explicit exploration-floor assumption ensuring each expert is sampled often enough within each segment, or an importance-weighting variance term (typically yielding a \sqrt{M} factor in the gating bound). All other components remain unchanged.

Theorem 6 (Stability under safety projection). *Let $\tilde{g}_t(m_{\text{safe}}) \geq p_{\min} > 0$ for all t . Then, the queue component Q_t is strongly stable. In particular, there exist constants $B < \infty$ and $\epsilon > 0$, such that for the Lyapunov function $L(Q) = \frac{1}{2}\|Q\|_2^2$, we have*

$$\mathbb{E}[L(Q_{t+1}) - L(Q_t) \mid Q_t] \leq B - \epsilon\|Q_t\|_1, \quad (35)$$

and hence

$$\limsup_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|Q_t\|_1] \leq \frac{B}{\epsilon}. \quad (36)$$

Theorem 6 operationalizes the key message of Impossibility II. That is, queueing mismatch can be catastrophic, so stability should be enforced by design. Safety projection yields a regime-agnostic stability floor, while Theorem 5 quantifies efficiency loss relative to the regime-aware benchmark within that stable envelope. Please see Appendix L for the complete proof of Theorem 6.

7 Numerical Results

We evaluate RA-MoE-AC (Algorithm 1) on the queueing system instantiation in Section 3.4.1 and focus on two questions aligned with our theory, i.e., switch tracking relative to the regime-aware benchmark and stability in queueing instantiations under latent regime mismatch. We compare three methods, RA-MoE-AC, single-expert actor-critic (Single-AC, i.e., the same actor-critic update but with one expert and no regime selection), and Safe-only (always deploy the stabilizing baseline π_{safe}). All methods share the same policy and critic parameterizations when applicable. The only difference is whether the agent can represent and select multiple regime-specialized behaviors.

We report time-average cost $V_T(\pi) = \frac{1}{T} \sum_{t=1}^T c_t$, average tracking regret $\text{Reg}(T)/T$ in (4), estimated by simulating the regime-aware benchmark with oracle regime labels, and queueing stability statistics $\frac{1}{T} \sum_{t=1}^T \mathbb{E}\|Q_t\|_1$ and $\max_{t \leq T} \|Q_t\|_1$. Due to page limits, all concrete simulation values (horizon, switch schedule, arrivals/channels, feature maps, stepsizes, and p_{\min}) are provided in Appendix A. Additional experiments (ablations and scaling studies) are deferred to Appendix B.

7.1 Switch Tracking and Regime Inference

Figure 1 visualizes regime tracking on the queueing instantiation. The left figure plots the smoothed instantaneous cost, and the right figure plots the gate probabilities $\tilde{g}_t(m)$ over experts (vertical dashed lines indicate true switches). RA-MoE-AC exhibits two consistent behaviors across seeds. First, after each switch, the gate rapidly reallocates probability mass from the previously preferred expert to the expert that is compatible with the new segment. Second, this reallocation coincides with a prompt recovery in per-slot cost. In contrast, Single-AC ($M = 1$) cannot express segment-specific behavior. It adapts slowly and incurs elevated cost after switches. Safe-only remains stable but is suboptimal in cost because it does not exploit benign regimes (it pays a persistent conservatism premium). These observations match the mechanism suggested by our analysis.

7.2 Stability and Backlog Behavior in Queueing

Figure 2 plots the queue backlog evolution. Single-AC can suffer sustained mismatch in segments where its learned service allocation is misaligned with the active regime, which yields persistent service deficit and backlog growth. RA-MoE-AC avoids this failure because the gate can switch to the appropriate expert, and because the safety projection enforces a nontrivial minimum usage of a stabilizing expert, which prevents catastrophic excursions even when the gate is temporarily

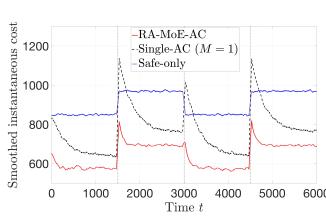
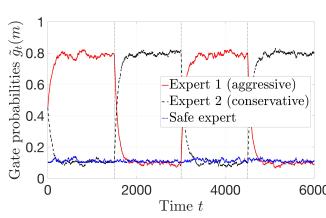
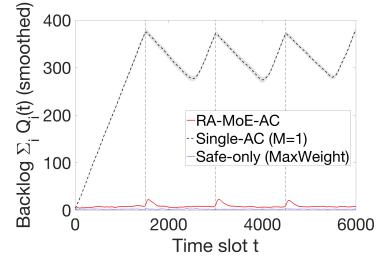


Fig. 1. Switch tracking in the queueing instantiation. Left: smoothed instantaneous cost. Right: gate probabilities for RA-MoE-AC. Vertical dashed lines mark true regime switches. RA-MoE-AC rapidly reallocates probability mass after each switch and correspondingly stabilizes the cost trajectory, while Single-AC exhibits larger and longer post-switch cost transients, and Safe-only incurs a higher cost level.

Fig. 2. Backlog and stability in the queueing instantiation. RA-MoE-AC maintains stable backlog with small post-switch transients, while Single-AC can exhibit large backlog excursions under regime mismatch. Safe-only remains stable.

Table 1. Summary metrics (mean \pm standard error). RA-MoE-AC improves time-average cost and tracking regret relative to Single-AC, while remaining stable. Safe-only is stable but conservative.

Method	$V_T(\pi)$	$\text{Reg}(T)/T$	$\frac{1}{T} \sum_{t=1}^T \mathbb{E} \ Q_t\ _1$	$\max_{t \leq T} \ Q_t\ _1$
RA-MoE-AC (Alg. 1)	0.9541 ± 0.0049	0.1081 ± 0.0060	6.89 ± 0.28	33.66 ± 1.38
Single-AC ($M = 1$)	7.5186 ± 0.2532	6.6727 ± 0.2513	340.73 ± 12.66	577.28 ± 20.41
Safe-only (π_{safe})	1.7437 ± 0.0009	0.8977 ± 0.0021	1.25 ± 0.05	15.19 ± 0.67

uncertain. Safe-only remains stable by design, but yields larger average cost because it does not adapt service to the regime-dependent cost tradeoff (Figure 1). Overall, the backlog trajectories provide direct empirical support for our key systems claim.

7.3 Summary metrics

Table 1 summarizes the main numerical outcomes. RA-MoE-AC achieves the best overall efficiency-stability tradeoff. It improves time-average cost relative to Safe-only while preventing backlog blow-ups that can occur under Single-AC. We emphasize that these are *not* tuned-to-win comparisons, since all methods share the same parameterization and step-sizes, and we only vary whether the agent can represent and select multiple regime-specialized experts (and whether safety is enforced).

8 Conclusion

We studied *regime-switching MDPs* for performance-critical systems with latent mode changes. We show that even under benign dynamics and slow switching, any single stationary actor-critic can be misaligned with a regime-aware benchmark, and in queueing instantiations mismatch can break stability. Motivated by this, we proposed RA-MoE-AC with TD-residual-driven gating, per-expert critics with timescale separation, and a lightweight safety projection enforcing a stabilizing baseline. We prove switching-aware tracking bounds scaling with the number of switches and mixing time, and strong stability under safety projection. Empirically, RA-MoE-AC re-concentrates after switches, improves cost over conservative baselines, and avoids backlog blow-ups.

981 References

- [1] Jacob Andreas, Dan Klein, and Sergey Levine. 2017. Modular multitask reinforcement learning with policy sketches. In *International conference on machine learning*. PMLR, 166–175.
- [2] Peter Auer, Thomas Jaksch, and Ronald Ortner. 2008. Near-optimal regret bounds for reinforcement learning. *Advances in neural information processing systems* 21 (2008).
- [3] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. 2017. Minimax regret bounds for reinforcement learning. In *International conference on machine learning*. PMLR, 263–272.
- [4] Michele Basilev and Igor V Nikiforov. 1993. *Detection of abrupt changes: theory and application*. Vol. 104. Prentice hall Englewood Cliffs.
- [5] Omar Besbes, Yonatan Gur, and Assaf Zeevi. 2014. Stochastic multi-armed-bandit problem with non-stationary rewards. *Advances in neural information processing systems* 27 (2014).
- [6] Christopher M Bishop and Hugh Bishop. 2023. *Deep learning: Foundations and concepts*. Springer Nature.
- [7] Paul Bogdan and Radu Marculescu. 2011. Non-stationary traffic analysis and its implications on multicore platform design. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* 30, 4 (2011), 508–519.
- [8] Vivek S Borkar and Vivek S Borkar. 2008. *Stochastic approximation: a dynamical systems viewpoint*. Vol. 100. Springer.
- [9] Alvaro A Cardenas, Saurabh Amin, and Shankar Sastry. 2008. Secure control: Towards survivable cyber-physical systems. In *2008 The 28th International Conference on Distributed Computing Systems Workshops*. IEEE, 495–500.
- [10] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. 2019. Learning to optimize under non-stationarity. In *The 22nd International Conference on Artificial Intelligence and Statistics*. PMLR, 1079–1087.
- [11] Nicolas Christianson, Junxuan Shen, and Adam Wierman. 2023. Optimal robustness-consistency tradeoffs for learning-augmented metrical task systems. In *International Conference on Artificial Intelligence and Statistics*. PMLR, 9377–9399.
- [12] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. 2015. Learning in nonstationary environments: A survey. *IEEE Computational intelligence magazine* 10, 4 (2015), 12–25.
- [13] Finale Doshi-Velez and George Konidaris. 2016. Hidden parameter markov decision processes: A semiparametric regression approach for discovering latent task parametrizations. In *IJCAI: proceedings of the conference*, Vol. 2016. 1432.
- [14] Mark Eisen, Konstantinos Gatsis, George J Pappas, and Alejandro Ribeiro. 2018. Learning statistically accurate resource allocations in non-stationary wireless systems. In *2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 3559–3563.
- [15] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. *Journal of Machine Learning Research* 23, 120 (2022), 1–39.
- [16] Yingjie Fei, Zhuoran Yang, Zhaoran Wang, and Qiaomin Xie. 2020. Dynamic regret of policy optimization in non-stationary environments. *Advances in Neural Information Processing Systems* 33 (2020), 6743–6754.
- [17] Leonidas Georgiadis, Michael J Neely, and Leandros Tassiulas. 2006. *Resource allocation and cross-layer control in wireless networks*. Now Publishers Inc.
- [18] Mor Harchol-Balter. 2013. *Performance modeling and design of computer systems: queueing theory in action*. Cambridge University Press.
- [19] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center. In *Proceedings of the 8th USENIX Symposium on Networked Systems Design and Implementation (NSDI)*. USENIX Association, 295–308.
- [20] Wenlong Huang, Igor Mordatch, and Deepak Pathak. 2020. One policy to control them all: Shared modular policies for agent-agnostic control. In *International Conference on Machine Learning*. PMLR, 4455–4464.
- [21] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991. Adaptive mixtures of local experts. *Neural computation* 3, 1 (1991), 79–87.
- [22] Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I Jordan. 2018. Is Q-learning provably efficient? *Advances in neural information processing systems* 31 (2018).
- [23] Vijay Konda and John Tsitsiklis. 1999. Actor-critic algorithms. *Advances in neural information processing systems* 12 (1999).
- [24] Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. 2021. RI for latent mdps: Regret guarantees and a lower bound. *Advances in Neural Information Processing Systems* 34 (2021), 24523–24534.
- [25] Xiaojun Lin, NB Shroff, and R Srikant. 2006. A tutorial on cross-layer optimization in wireless networks. *IEEE Journal on Selected Areas in Communications* 24, 8 (2006), 1452–1463.
- [26] Zhenhua Liu, Iris Liu, Nianguan Chen, Christina Razon, and Adam Wierman. 2013. Data Center Demand Response: Avoiding the Coincident Peak via Workload Shifting and Local Generation. *Performance Evaluation* 70, 10 (2013), 770–791.
- [27] Mohammad Hossein Manshaei, Quanyan Zhu, Tansu Alpcan, Tamer Başar, and Jean-Pierre Hubaux. 2013. Game theory meets network security and privacy. *AcM Computing Surveys (Csur)* 45, 3 (2013), 1–39.

- 1030 [28] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016. Resource management with deep
1031 reinforcement learning. In *Proceedings of the 15th ACM workshop on hot topics in networks*. 50–56.
- 1032 [29] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive video streaming with pensieve. In
1033 *Proceedings of the conference of the ACM special interest group on data communication*. 197–210.
- 1034 [30] Jayakrishnan Nair, Adam Wierman, and Bert Zwart. 2022. *The fundamentals of heavy tails: Properties, emergence, and
estimation*. Vol. 53. Cambridge University Press.
- 1035 [31] Michael Neely. 2010. *Stochastic network optimization with application to communication and queueing systems*. Morgan
1036 & Claypool Publishers.
- 1037 [32] Aldo Pacchiano, Christoph Dann, and Claudio Gentile. 2022. Best of both worlds model selection. *Advances in Neural
Information Processing Systems* 35 (2022), 1883–1895.
- 1038 [33] Ewan S Page. 1954. Continuous inspection schemes. *Biometrika* 41, 1/2 (1954), 100–115.
- 1039 [34] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. 2017.
1040 Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. *arXiv preprint arXiv:1701.06538*
1041 (2017).
- 1042 [35] Ming Shi, Yingbin Liang, and Ness Shroff. [n. d.]. Near-Optimal Adversarial Reinforcement Learning with Switching
1043 Costs. In *The Eleventh International Conference on Learning Representations*.
- 1044 [36] Ming Shi, Yingbin Liang, and Ness Shroff. 2023. A near-optimal algorithm for safe reinforcement learning under
1045 instantaneous hard constraints. In *International Conference on Machine Learning*. PMLR, 31243–31268.
- 1046 [37] Ming Shi, Yingbin Liang, and Ness B Shroff. 2024. Adversarial Online Reinforcement Learning Under Limited Defender
1047 Resources. In *Network Security Empowered by Artificial Intelligence*. Springer, 265–301.
- 1048 [38] Alexander L Stolyar. 2004. Maxweight scheduling in a generalized switch: State space collapse and workload mini-
1049 mization in heavy traffic. *The Annals of Applied Probability* 14, 1 (2004), 1–53.
- 1050 [39] Richard S Sutton, Andrew G Barto, et al. 2018. *Reinforcement learning: An introduction*. Vol. 1. MIT press Cambridge.
- 1051 [40] Alexander Tartakovsky, Igor Nikiforov, and Michele Basseville. 2014. *Sequential analysis: Hypothesis testing and
1052 changepoint detection*. CRC press.
- 1053 [41] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and John Wilkes. 2015. Large-
1054 scale Cluster Management at Google with Borg. In *Proceedings of the Tenth European Conference on Computer Systems
(EuroSys)*. ACM.
- 1055 [42] Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder, Jakub Pachocki, Weizhu
1056 Chen, and Jianfeng Gao. 2021. Tuning large neural networks via zero-shot hyperparameter transfer. *Advances in
1057 Neural Information Processing Systems* 34 (2021), 17084–17097.
- 1058 [43] Runlong Zhou, Zhang Zihan, and Simon Shaolei Du. 2023. Sharp variance-dependent bounds in reinforcement learning:
1059 Best of both worlds in stochastic and deterministic environments. In *International Conference on Machine Learning*.
1060 PMLR, 42878–42914.

1059 A Simulation Setup and Hyperparameters

1060 A.1 Common Protocol

1062 *Horizon and switching.* We run each method for horizon $T = 6000$ with $S_T = 3$ switches and
1063 minimum segment length $L_{\min} = 1500$. Switch times are $\tau_0 = 1$, $\tau_1 = 1501$, $\tau_2 = 3001$, $\tau_3 = 4501$,
1064 and $\tau_{S_T+1} = T + 1 = 6001$. Unless stated otherwise, we use equal-length segments $L_k = 1500$ and
1065 alternate regimes as $z_k = 1$ for $k \in \{1, 3\}$ and $z_k = 2$ for $k \in \{2, 4\}$.

1066 *Number of experts and safe expert.* We use $M = 3$ experts, where experts $m \in \{1, 2\}$ are learned
1067 and expert $m_{\text{safe}} = 3$ is a fixed stabilizing baseline. The safety projection enforces $\tilde{g}_t(m_{\text{safe}}) \geq p_{\min}$
1068 with $p_{\min} = 0.05$.

1070 *Seeds and confidence.* We use $N_{\text{seed}} = 20$ random seeds and report mean \pm one standard error.
1071 Time-series figures are smoothed using a moving average window of size 75.

1072 *Oracle regime-aware benchmark for regret.* To estimate $\text{Reg}(T)$ in (4), we simulate the benchmark
1073 that applies $\pi^{*,(z)}$ on each segment using oracle regime labels. For each regime $z \in \{1, 2\}$, we
1074 approximate $\pi^{*,(z)}$ by running the same actor-critic update with the regime held fixed at z for 2×10^5
1075 steps (using the same policy/value parameterization as the learned agents), and then deploying the
1076 resulting stationary policy whenever $z_t = z$. This yields a fair in-class regime-aware benchmark.

Table 2. Key notation.

Symbol	Meaning
$z_t \in \mathcal{Z}$	latent regime (piecewise constant)
S_T	number of regime switches up to time T
L_{\min}	minimum segment length
$s_t \in \mathcal{S}$	system state (e.g., queues + exogenous variables)
$a_t \in \mathcal{A}$	control action
$P^{(z)}$	transition kernel under regime z
$c^{(z)}$	instantaneous cost under regime z
c_{\max}	uniform upper bound on per-slot cost
$\pi_{\phi_m}^{(m)}$	expert m actor (policy)
$g_{\theta}(\cdot s)$	gating distribution over experts
G_{π}	bound on expert policy score $\ \nabla_{\phi_m} \log \pi_{\phi_m}^{(m)}(a s)\ $
G_g	bound on gate score $\ \nabla_{\theta} \log g_{\theta}(m s)\ $
$\text{Reg}(T)$	tracking regret against regime-aware benchmark
t_{mix}	(uniform) mixing time within a regime

A.2 Queueing System Instantiation

Dynamics. We simulate a two-queue single-server system (a standard extension of Section 3.4.1 used to expose regime-mismatch instability). The state is $s_t = (Q_{t,1}, Q_{t,2})$ with $Q_{t,i} \in \mathbb{R}_+$. The action is $a_t \in \{0, 1, 2\}$, where $a_t = 0$ means *idle* and $a_t = i$ means *serve queue i* . Service is one packet when nonempty, i.e.,

$$Q_{t+1,i} = \left[Q_{t,i} + A_{t,i}^{(z_t)} - \mathbb{1}\{a_t = i\} \right]^+, \quad i \in \{1, 2\}. \quad (37)$$

Hence $\mu_{\max} = 1$. Arrivals are independent Bernoulli:

$$A_{t,i}^{(z)} \sim \text{Bernoulli}(\lambda_i^{(z)}), \quad (38)$$

with regime-dependent rates

$$(\lambda_1^{(1)}, \lambda_2^{(1)}) = (0.85, 0.25), \quad (\lambda_1^{(2)}, \lambda_2^{(2)}) = (0.25, 0.85), \quad (39)$$

so that the identity of the bottleneck queue swaps across regimes.

Cost. We use a backlog-energy objective

$$c^{(z)}(Q, a) = w(Q_1 + Q_2) + \kappa^{(z)} \mathbb{1}\{a \neq 0\}, \quad (40)$$

with $w = 0.01$ and energy-price coefficients

$$\kappa^{(1)} = 0.02, \quad \kappa^{(2)} = 0.20. \quad (41)$$

Thus, serving is cheap in regime 1 and expensive in regime 2, creating different cost-stability tradeoffs across segments.

Policy and critic parameterization. Each learned expert uses a softmax policy over $\{0, 1, 2\}$ with linear action scores, i.e.,

$$\pi_{\phi_m}^{(m)}(a | s) \propto \exp(u_a^{(m)}(s)), \quad u_a^{(m)}(s) = (\phi_a^{(m)})^{\top} \varphi_a(s), \quad (42)$$

1128 where $\varphi_a(s) = [1, \tilde{Q}_1, \tilde{Q}_2]^\top$ and $\tilde{Q}_i = \min\{Q_i/50, 1\}$. Per-expert critics are linear, i.e.,

$$1129 \quad 1130 \quad V_{w_m}^{(m)}(s) = w_m^\top \psi(s), \psi(s) = [1, \tilde{Q}_1, \tilde{Q}_2, \tilde{Q}_1^2, \tilde{Q}_2^2]^\top. \quad (43)$$

1131 *Gate parameterization.* We use a softmax gate

$$1132 \quad 1133 \quad g_\theta(m \mid s) \propto \exp(\theta_m^\top \varphi_g(s)), \varphi_g(s) = [1, \tilde{Q}_1, \tilde{Q}_2, \tilde{Q}_1 - \tilde{Q}_2]^\top. \quad (44)$$

1134 *Safe expert.* We embed a stabilizing MaxWeight-style baseline as expert $m_{\text{safe}} = 3$, i.e.,

$$1135 \quad 1136 \quad \pi_{\text{safe}} : a_t = \begin{cases} \arg \max_{i \in \{1, 2\}} Q_{t,i}, & \text{if } Q_{t,1} + Q_{t,2} > 0, \\ 0, & \text{otherwise.} \end{cases} \quad (45)$$

1139 This baseline satisfies the drift condition in Theorem 6 for the simulated primitives, and the safety
1140 projection enforces its minimum usage probability.

1141 A.3 RA-MoE-AC Updates and Hyperparameters

1143 *TD residual and gate loss.* We use the average-cost TD residual $\delta_t^{(m)} = c_t - \bar{c}^{(m)} + V_{w_m}^{(m)}(s_{t+1}) -$
1144 $V_{w_m}^{(m)}(s_t)$ and define the gate loss

$$1145 \quad 1146 \quad \ell_t(m) = \text{clip}((\delta_t^{(m)})^2, 0, C) \text{ and } C = 10. \quad (46)$$

1147 *Step-sizes and timescales.* We use constant step-sizes (stable finite-horizon behavior):

$$1148 \quad \beta = 0.05, \eta = 0.02, \alpha = 0.005, \text{ and } \rho = 0.02. \quad (47)$$

1149 We project policy and gate parameters onto ℓ_∞ balls of radius 5 to enforce bounded scores.

1150 B Additional Numerical Results

1154 This appendix reports additional experiments that stress-test RA-MoE-AC beyond the basic comparisons
1155 in the main paper. Unless stated otherwise, we use the same environments, horizons, switching
1156 patterns, hyperparameters, and reporting protocol as in Appendix A. We report mean \pm one standard
1157 error over N_{seed} seeds for time-average cost $V_T(\pi)$, tracking regret $\text{Reg}(T)/T$ against the
1158 oracle regime-aware benchmark, average backlog $\frac{1}{T} \sum_{t=1}^T \mathbb{E} \|Q_t\|_1$, and peak backlog $\max_{t \leq T} \|Q_t\|_1$
1159 (queueing system instantiations). When plotting time series, we use the same smoothing window
1160 as in Appendix A.

1161 B.1 Ablations: Which Mechanism Matters?

1163 Figure 3 summarizes ablations on the gating signal, timescale separation, and the safety projection.

1164 *Gate signal ablation.* We isolate the role of the gating feedback by changing only the gate loss
1165 $\ell_t(m)$ while keeping experts, critics, step-sizes, and safety projection unchanged. We compare
1166 TD-residual losses (ours) to cost-only losses, advantage-only losses, and entropy-regularized cost
1167 losses. We report time-to-reconcentrate after each switch (time until $\max_m \tilde{g}_t(m) \geq 0.8$) and post-
1168 switch transient cost (area under the excess-cost curve over a fixed window). TD-residual losses
1169 consistently yield faster re-concentration and smaller post-switch transients.

1171 *Timescale separation ablation.* We sweep (α, η, β) to violate the intended ordering (critic fast,
1172 gate intermediate, actor slow), changing only step-sizes and keeping all other components fixed.
1173 We report switching-transient cost and backlog peaks. When the critic is not the fastest component,
1174 value estimates lag the segment-wise fixed point, TD residuals become noisy, and the gate oscillates,
1175 increasing both cost and post-switch backlog spikes.

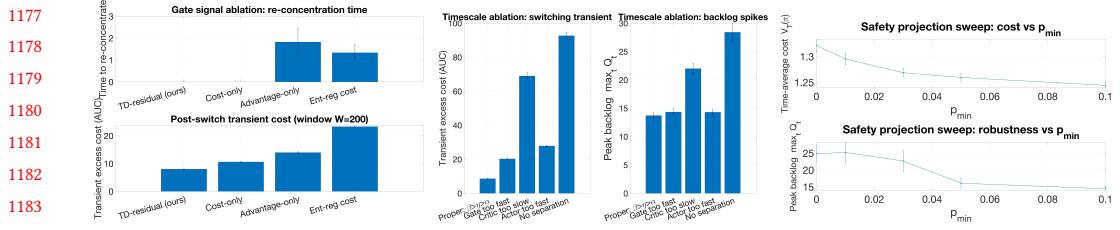


Fig. 3. Ablations. Left: gating loss variants (re-concentration and transient cost). Middle: step-size sweeps showing the role of timescale separation. Right: safety projection sweeps.

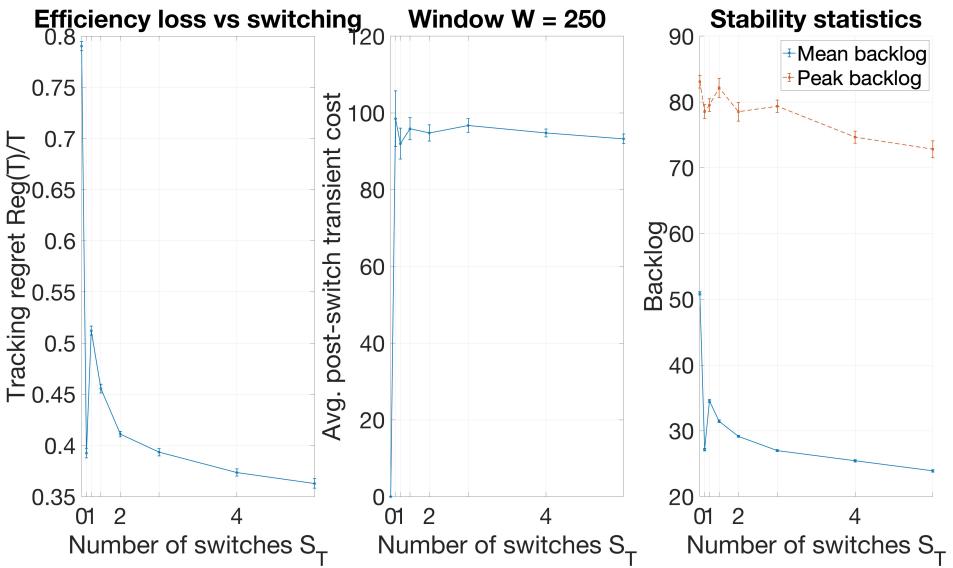


Fig. 4. Switching-frequency scaling. Tracking regret, transient cost, and backlog statistics versus S_T (and induced L_{\min}).

Safety projection sweep. We sweep $p_{\min} \in \{0, 0.01, 0.03, 0.05, 0.10\}$ (changing only the projection constraint) to quantify the conservatism–risk tradeoff. Larger p_{\min} improves robustness (smaller peak backlog and fewer rare excursions) at the price of a mild increase in time-average cost. Setting $p_{\min} = 0$ can improve cost in benign segments but may allow catastrophic backlog excursions under prolonged gate uncertainty.

B.2 Scaling with Switching Frequency and Segment Length

We vary the number of switches S_T while holding the horizon T fixed, using equal-length segments (so $L_{\min} = T/(S_T+1)$) and the same alternating-regime pattern as in the main experiments. We report $\text{Reg}(T)/T$, post-switch transient cost (fixed window after each τ_k), and backlog statistics. The trends in Figure 4 match the decomposition suggested by Theorem 5. That is, performance degrades as S_T increases (more frequent re-inference and more transients), and improves as segments lengthen relative to per-regime mixing.

Table 3. Additional baselines (mean \pm s.e.). Oracle regime-aware selection and QCD+AC variants.

Method	$V_T(\pi)$	$\text{Reg}(T)/T$	$\frac{1}{T} \sum_t \mathbb{E}\ Q_t\ _1$	$\max_{t \leq T} \ Q_t\ _1$
Oracle regime-aware selector	0.6969 ± 0.0009	-0.0024 ± 0.0001	3.2326 ± 0.0275	18.8566 ± 0.5542
QCD+AC (reset on detection)	1.1342 ± 0.0421	0.4350 ± 0.0420	15.7246 ± 0.8973	73.3400 ± 2.1504

B.3 Additional Baselines in Table 3: Oracle and QCD-Style Switching

Oracle regime-aware selector. We include an oracle selector that observes z_t and always chooses the in-class best expert for that regime, i.e., $m_t = \arg \min_m J^{(z_t)}(\pi^{(m)})$ (ties broken arbitrarily). This isolates the performance loss due to imperfect online regime inference. Regret is estimated by Monte Carlo with an in-class regime-aware benchmark. Thus, small negative values may occur due to sampling error of the benchmark.

Quick change detection (QCD) with AC. We include a detect-then-adapt baseline that runs a standard change detector on a scalar stream (we use the selected expert's TD-residual squared loss), and upon detection resets the actor-critic state (critic weights and average-cost baseline) and restarts learning with a fixed exploration floor. This baseline separates explicit detection and reset from continuous online gating.

C Proof of Theorem 1

PROOF. Fix an arbitrary stationary randomized policy π . Since π is stationary and the state space is $\{s_0, s_1\}$, define

$$p \triangleq \pi(a^+ | s_0) \in [0, 1] \text{ and } \pi(a^- | s_0) = 1 - p.$$

We do not need to define $\pi(\cdot | s_1)$ because costs at s_1 are always zero.

C.1 Step 1: The state s_0 is visited exactly $\lfloor T/2 \rfloor$ times

By construction, the dynamics are deterministic and regime-independent: $s_{t+1} = s_1$ if $s_t = s_0$ and $s_{t+1} = s_0$ if $s_t = s_1$. Thus the chain alternates between the two states, regardless of the action choices. Assuming s_1 is the unique successor of s_0 and vice versa, the trajectory satisfies

$$s_1, s_0, s_1, s_0, \dots \quad \text{or} \quad s_0, s_1, s_0, s_1, \dots$$

depending only on the initial state. In either case, among the first T time indices, the number of visits to s_0 is exactly $\lfloor T/2 \rfloor$. Denote this number by

$$N_0(T) \triangleq \sum_{t=1}^T \mathbb{1}\{s_t = s_0\} = \left\lfloor \frac{T}{2} \right\rfloor. \quad (48)$$

C.2 Step 2: Expected cumulative cost under a fixed regime

Consider first the case where the regime is constant over the entire horizon, i.e., $z_t \equiv z \in \{1, 2\}$. Because costs at s_1 are always 0, only visits to s_0 contribute.

C.2.1 In regime 1. At state s_0 , action a^+ costs 0 and action a^- costs 1. Therefore, conditioned on $s_t = s_0$,

$$\mathbb{E} [c^{(1)}(s_t, a_t) | s_t = s_0] = 0 \cdot \pi(a^+ | s_0) + 1 \cdot \pi(a^- | s_0) = 1 - p. \quad (49)$$

1275 *C.2.2 In regime 2.* The roles swap, and conditioned on $s_t = s_0$,

$$1276 \quad 1277 \quad \mathbb{E} [c^{(2)}(s_t, a_t) \mid s_t = s_0] = 1 \cdot \pi(a^+ \mid s_0) + 0 \cdot \pi(a^- \mid s_0) = p. \quad (50)$$

1278 Since the event $\{s_t = s_0\}$ is deterministic given t (Step 1), by linearity of expectation we obtain

$$1280 \quad 1281 \quad \mathbb{E} \left[\sum_{t=1}^T c^{(1)}(s_t, a_t) \right] = \sum_{t=1}^T \mathbb{E} [c^{(1)}(s_t, a_t)] = \sum_{t=1}^T \mathbb{1}\{s_t = s_0\} (1-p) = N_0(T)(1-p),$$

$$1283 \quad 1284 \quad \mathbb{E} \left[\sum_{t=1}^T c^{(2)}(s_t, a_t) \right] = \sum_{t=1}^T \mathbb{1}\{s_t = s_0\} p = N_0(T)p. \quad (51)$$

1286 **C.3 Step 3: Benchmark cost is identically zero**

1287 By definition, the regime-aware benchmark π_t^* chooses the zero-cost action at s_0 for the active
1288 regime: it chooses a^+ when $z_t = 1$ and a^- when $z_t = 2$. At s_1 , both actions have cost 0. Hence, for
1289 every time t , the incurred cost under π_t^* is 0, and therefore
1290

$$1291 \quad 1292 \quad 1293 \quad C_T^* \triangleq \mathbb{E} \left[\sum_{t=1}^T c^{(z_t)}(s_t^{\pi^*}, a_t^{\pi^*}) \right] = 0, \quad (52)$$

1294 for any regime sequence $\{z_t\}$.

1296 **C.4 Step 4: Choose a piecewise-constant regime sequence that maximizes the loss of π**

1297 Define a constant (hence piecewise-constant) regime sequence as follows:

$$1299 \quad 1300 \quad 1301 \quad z_t \equiv \begin{cases} 1, & \text{if } 1-p \geq p, \\ 2, & \text{if } p > 1-p. \end{cases}$$

1302 Equivalently, choose the regime z that makes π 's expected cost at s_0 equal to $\max\{p, 1-p\}$.

1303 Under this regime sequence, combining Steps 2 and 3,

$$1304 \quad 1305 \quad 1306 \quad \text{Reg}(T) = C_T(\pi) - C_T^* = C_T(\pi) \geq N_0(T) \max\{p, 1-p\} = \left\lfloor \frac{T}{2} \right\rfloor \max\{p, 1-p\}. \quad (53)$$

1307 Finally, since $\max\{p, 1-p\} \geq \frac{1}{2}$ for all $p \in [0, 1]$, we obtain the universal bound
1308

$$1309 \quad 1310 \quad 1311 \quad \text{Reg}(T) \geq \left\lfloor \frac{T}{2} \right\rfloor \cdot \frac{1}{2} \geq \frac{T}{4} - \frac{1}{2}. \quad (54)$$

1312 This implies $\text{Reg}(T) = \Omega(T)$ and $\text{Reg}(T)/T = \Omega(1)$.

□

1314 **D Proof of Theorem 2**

1315 **PROOF.** Fix any stationary randomized policy π and any $L_{\min} \geq 1$. Let $p = \pi(a^+ \mid s_0)$. As in the
1316 proof of Theorem 1, the regime-aware benchmark incurs zero cost at all times, so for any admissible
1317 regime sequence $\{z_t\}$,

$$1319 \quad 1320 \quad \text{Reg}(T) = C_T(\pi) - C_T^* = C_T(\pi). \quad (55)$$

1321 We show that there exists an admissible piecewise-constant regime sequence (with minimum
1322 segment length L_{\min}) under which $C_T(\pi)$ grows linearly in T .

1324 **D.1 Case (i): no switching**

1325 Choose $z_t \equiv z$ constant for all $t = 1, \dots, T$, where $z \in \{1, 2\}$ is selected as in Theorem 1 to maximize
 1326 π 's expected cost at s_0 . This regime sequence has $S_T = 0$ and a single segment of length T , hence it
 1327 satisfies the minimum segment length constraint for any $L_{\min} \leq T$. By Theorem 1,
 1328

$$1329 \quad \text{Reg}(T) = C_T(\pi) \geq \left\lfloor \frac{T}{2} \right\rfloor \max\{p, 1-p\} \geq \frac{T}{4} - \frac{1}{2} = \Omega(T). \quad (56)$$

1331 **D.2 Case (ii): switching with segment length exactly L_{\min}**

1332 Assume T is a multiple of $2L_{\min}$ (as stated in (16)) and set $K \triangleq \frac{T}{L_{\min}}$ as an even integer. Partition the
 1333 horizon into K consecutive segments of length L_{\min} :

$$1335 \quad I_k \triangleq \{(k-1)L_{\min} + 1, \dots, kL_{\min}\}, \text{ for } k = 1, \dots, K. \quad (57)$$

1336 Define a piecewise-constant regime sequence by alternating regimes:

$$1338 \quad z_t = \begin{cases} 1, & t \in I_k \text{ with } k \text{ odd,} \\ 2, & t \in I_k \text{ with } k \text{ even.} \end{cases} \quad (58)$$

1341 Every segment has length exactly L_{\min} , so the minimum segment length constraint is satisfied.

1342 *D.2.1 Step 1: within each segment, s_0 is visited at least $\lfloor L_{\min}/2 \rfloor$ times.* Because the state alternates
 1343 deterministically between s_0 and s_1 at every time step, in any consecutive block of length L_{\min} , the
 1344 number of indices t with $s_t = s_0$ is either $\lfloor L_{\min}/2 \rfloor$ or $\lceil L_{\min}/2 \rceil$, depending on the parity of the block
 1345 start. In particular, it is always at least $\lfloor L_{\min}/2 \rfloor$. We define $N_{0,k} \triangleq \sum_{t \in I_k} \mathbb{1}\{s_t = s_0\}$, then we have
 1346

$$1347 \quad N_{0,k} \geq \left\lfloor \frac{L_{\min}}{2} \right\rfloor, \text{ for all } k = 1, \dots, K. \quad (59)$$

1349 *D.2.2 Step 2: expected cost per segment.* In a segment with regime 1, each visit to s_0 contributes
 1350 expected cost $1-p$; in a segment with regime 2, each visit contributes expected cost p . Costs at s_1
 1351 are always 0. Therefore,

$$1353 \quad \mathbb{E} \left[\sum_{t \in I_k} c^{(z_t)}(s_t, a_t) \right] = \begin{cases} (1-p) N_{0,k}, & k \text{ odd,} \\ p N_{0,k}, & k \text{ even.} \end{cases} \quad (60)$$

1356 *D.2.3 Step 3: sum over alternating segments.* Because K is even, there are exactly $K/2$ odd segments
 1357 and $K/2$ even segments. Summing the lower bound $N_{0,k} \geq \lfloor L_{\min}/2 \rfloor$ and using $(1-p) + p = 1$, we
 1358 get

$$1360 \quad \text{Reg}(T) = C_T(\pi) = \mathbb{E} \left[\sum_{k=1}^K \sum_{t \in I_k} c^{(z_t)}(s_t, a_t) \right] = \sum_{k=1}^K \mathbb{E} \left[\sum_{t \in I_k} c^{(z_t)}(s_t, a_t) \right] \quad (61)$$

$$1363 \quad \geq \sum_{\substack{k \leq K \\ k \text{ odd}}} (1-p) \left\lfloor \frac{L_{\min}}{2} \right\rfloor + \sum_{\substack{k \leq K \\ k \text{ even}}} p \left\lfloor \frac{L_{\min}}{2} \right\rfloor \quad (62)$$

$$1366 \quad = \frac{K}{2} \left\lfloor \frac{L_{\min}}{2} \right\rfloor \cdot ((1-p) + p) = \frac{K}{2} \left\lfloor \frac{L_{\min}}{2} \right\rfloor. \quad (63)$$

1368 Substituting $K = T/L_{\min}$ yields

$$1370 \quad \text{Reg}(T) \geq \frac{T}{2L_{\min}} \left\lfloor \frac{L_{\min}}{2} \right\rfloor. \quad (64)$$

1373 Using the elementary bound $\lfloor x \rfloor \geq x - 1$ with $x = L_{\min}/2$, we obtain $\lfloor \frac{L_{\min}}{2} \rfloor \geq \frac{L_{\min}}{2} - 1$, and therefore

$$1374 \quad 1375 \quad 1376 \quad \text{Reg}(T) \geq \frac{T}{2L_{\min}} \left(\frac{L_{\min}}{2} - 1 \right) = \left(\frac{1}{4} - \frac{1}{2L_{\min}} \right) T, \quad (65)$$

1377 which matches (16).

1378 Combining cases (i) and (ii), we conclude that for any $L_{\min} \geq 1$, there exists an admissible
1379 piecewise-constant regime sequence satisfying the minimum segment length constraint such that
1380 $\text{Reg}(T) = \Omega(T)$. □

E Proof of Theorem 3

1384 We consider a two-queue, single-server, discrete-time system. Let $Q_{t,i} \in \mathbb{Z}_+$ denote the backlog of
1385 queue $i \in \{1, 2\}$ at the beginning of slot t . In each slot, the controller chooses an action $a_t \in \{1, 2\}$.
1386 If $Q_{t,a_t} > 0$, one packet departs from queue a_t ; otherwise the service opportunity is wasted (the
1387 server idles). Let $A_{t,i}^{(z_t)} \in \{0, 1\}$ denote arrivals to queue i during slot t under regime z_t . The queue
1388 dynamics are

$$1389 \quad Q_{t+1,i} = Q_{t,i} - D_{t,i} + A_{t,i}^{(z_t)} \text{ and } D_{t,i} \triangleq \mathbb{1}\{a_t = i\} \mathbb{1}\{Q_{t,i} > 0\}, \text{ for } i \in \{1, 2\}. \quad (66)$$

1391 We construct arrivals as i.i.d. Bernoulli random variables across time and queues conditioned on
1392 the regime, with means

$$1393 \quad \mathbb{E}[A_{t,1}^{(1)}] = \lambda_H, \mathbb{E}[A_{t,2}^{(1)}] = \lambda_L; \text{ and } \mathbb{E}[A_{t,1}^{(2)}] = \lambda_L, \mathbb{E}[A_{t,2}^{(2)}] = \lambda_H, \quad (67)$$

1395 where $\lambda_H \in (1/2, 1)$ and $\lambda_L \in (0, 1 - \lambda_H)$. This ensures the system is stabilizable in each fixed
1396 regime.

1397 *Fixed randomized priority policies.* A stationary randomized priority policy with parameter
1398 $p \in [0, 1]$ is defined by

$$1400 \quad \Pr(a_t = 1) = p \text{ and } \Pr(a_t = 2) = 1 - p, \text{ for all } t, \quad (68)$$

1401 independently of the state/history (thus it may waste service when the selected queue is empty).

1403 PROOF. We prove the two items in Theorem 3 by explicit construction.

E.1 Item (1): per-regime stabilizability

1406 Fix a regime $z \in \{1, 2\}$. Let (λ_1, λ_2) denote the arrival means under that regime; by (67), $(\lambda_1, \lambda_2) =$
1407 (λ_H, λ_L) if $z = 1$ and $(\lambda_1, \lambda_2) = (\lambda_L, \lambda_H)$ if $z = 2$. By assumption, $\lambda_H + \lambda_L < 1$.

1408 Consider the following *work-conserving* stationary policy $\pi^{\text{wc},(z)}$:

- 1409 • if exactly one queue is nonempty, serve the nonempty queue;
- 1410 • if both queues are nonempty, serve queue i with probability α_i , where $\alpha_1, \alpha_2 > 0$, $\alpha_1 + \alpha_2 = 1$,
1411 and $\alpha_i > \lambda_i$ for both $i = 1, 2$.

1412 Such (α_1, α_2) exist because $\lambda_1 + \lambda_2 < 1$; for example, choose $\alpha_i = \lambda_i + \frac{1 - (\lambda_1 + \lambda_2)}{2}$.

1413 Let $V_t \triangleq Q_{t,1} + Q_{t,2}$. Under a work-conserving policy, whenever $V_t > 0$ the server necessarily
1414 serves one packet from a nonempty queue, so the total departure satisfies $D_{t,1} + D_{t,2} = 1$. When
1415 $V_t = 0$, we have $D_{t,1} + D_{t,2} = 0$. Summing (66) over $i \in \{1, 2\}$ gives

$$1417 \quad V_{t+1} - V_t = (A_{t,1}^{(z)} + A_{t,2}^{(z)}) - (D_{t,1} + D_{t,2}) = (A_{t,1}^{(z)} + A_{t,2}^{(z)}) - \mathbb{1}\{V_t > 0\}. \quad (69)$$

1418 Taking conditional expectation given V_t yields

$$1419 \quad 1420 \quad \mathbb{E}[V_{t+1} - V_t \mid V_t] = (\lambda_1 + \lambda_2) - \mathbb{1}\{V_t > 0\} \leq -\epsilon \cdot \mathbb{1}\{V_t > 0\}, \quad (70)$$

1422 where $\epsilon \triangleq 1 - (\lambda_1 + \lambda_2) > 0$. Thus, for all states with $V_t > 0$, the drift of V_t is uniformly negative by
 1423 at least ϵ . By a standard Foster–Lyapunov criterion for countable-state Markov chains (using V as
 1424 a Lyapunov function), this implies positive recurrence of $\{(Q_{t,1}, Q_{t,2})\}$ under regime z and hence
 1425 strong stability (13). Therefore, each fixed regime is stabilizable by a stationary policy.

1426 **E.2 Item (2): impossibility for fixed randomized priorities under switching**

1427 Fix an arbitrary $p \in [0, 1]$ and consider the fixed priority policy (68). We show that there exists a
 1428 piecewise-constant regime sequence for which the system is not strongly stable. Define the “bad”
 1429 regime for this p as

$$1431 \quad z_{\text{bad}}(p) \triangleq \begin{cases} 1, & \text{if } p < \lambda_H, \\ 1432 2, & \text{otherwise.} \end{cases} \quad (71)$$

1433 This choice is always valid because if $p \geq \lambda_H$, then $1 - p \leq 1 - \lambda_H < \lambda_H$ (since $\lambda_H > 1/2$), so regime
 1434 2 makes queue 2 heavy with arrival λ_H but service attempt probability $1 - p < \lambda_H$.

1435 Now consider the (piecewise-constant) regime sequence $z_t \equiv z_{\text{bad}}(p)$ for all t . Let i^* be the heavy
 1436 queue under that regime: $i^* = 1$ if $z_{\text{bad}}(p) = 1$ and $i^* = 2$ if $z_{\text{bad}}(p) = 2$. Under the fixed- p policy,
 1437 the action attempt probability for serving queue i^* is

$$1438 \quad s(p) \triangleq \begin{cases} p, & i^* = 1, \\ 1439 1 - p, & i^* = 2. \end{cases} \quad (72)$$

1440 By construction, $s(p) < \lambda_H$.

1441 From the queue update (66), we always have the inequality

$$1442 \quad Q_{t+1,i^*} \geq Q_{t,i^*} - \mathbb{1}\{a_t = i^*\} + A_{t,i^*}^{(z_{\text{bad}}(p))}. \quad (73)$$

1443 Indeed, when $Q_{t,i^*} > 0$, the departure is exactly $\mathbb{1}\{a_t = i^*\}$; when $Q_{t,i^*} = 0$, the true departure is 0
 1444 and thus subtracting $\mathbb{1}\{a_t = i^*\}$ only makes the right-hand side smaller, so the inequality holds.

1445 Taking expectation of (73) conditional on Q_{t,i^*} and using $\mathbb{E}[\mathbb{1}\{a_t = i^*\}] = s(p)$ and $\mathbb{E}[A_{t,i^*}^{(z_{\text{bad}}(p))}] =$
 1446 λ_H , we obtain

$$1447 \quad \mathbb{E}[Q_{t+1,i^*} \mid Q_{t,i^*}] \geq Q_{t,i^*} + (\lambda_H - s(p)). \quad (74)$$

1448 Taking total expectation and iterating yields, for all $t \geq 1$,

$$1449 \quad \mathbb{E}[Q_{t,i^*}] \geq \mathbb{E}[Q_{1,i^*}] + (t-1)(\lambda_H - s(p)). \quad (75)$$

1450 Since $\lambda_H - s(p) > 0$, $\mathbb{E}[Q_{t,i^*}]$ grows at least linearly in t .

1451 Finally, strong stability (13) fails because

$$1452 \quad \frac{1}{T} \sum_{t=1}^T \mathbb{E}[Q_{t,1} + Q_{t,2}] \geq \frac{1}{T} \sum_{t=1}^T \mathbb{E}[Q_{t,i^*}] \stackrel{(75)}{\geq} \frac{1}{T} \sum_{t=1}^T (t-1)(\lambda_H - s(p)) = \frac{(T-1)}{2}(\lambda_H - s(p)) \xrightarrow{T \rightarrow \infty} \infty. \quad (76)$$

1453 Therefore, the fixed randomized priority policy with parameter p is not strongly stable under the
 1454 (piecewise-constant) regime sequence $z_t \equiv z_{\text{bad}}(p)$. This proves item (2) and completes the proof.

1455 \square

1456 **F Proof of Theorem 4**

1457 PROOF. Fix $p \in [0, 1]$ and consider the fixed randomized priority policy (68). Define

$$1458 \quad s_{\min}(p) \triangleq \min\{p, 1 - p\} \in [0, 1/2] \text{ and } \delta(p) \triangleq \lambda_H - s_{\min}(p). \quad (77)$$

1459 Since $\lambda_H > 1/2$, we have $\delta(p) \geq \lambda_H - \frac{1}{2} > 0$.

1460

1471 **F.1 Step 1: construct a regime sequence with minimum segment length L_{\min}**

1472 Define the “bad” regime as the regime in which the heavy queue is the *less frequently attempted*
 1473 queue under the fixed- p policy:

$$1475 z_{\text{bad}} \triangleq \begin{cases} 1, & \text{if } p \leq 1/2 \quad (\text{queue 1 is attempted with prob. } p = s_{\min}(p)), \\ 2, & \text{if } p > 1/2 \quad (\text{queue 2 is attempted with prob. } 1 - p = s_{\min}(p)). \end{cases} \quad (78)$$

1477 Let $i^* \in \{1, 2\}$ denote the heavy queue under regime z_{bad} (so $i^* = 1$ if $z_{\text{bad}} = 1$ and $i^* = 2$ if $z_{\text{bad}} = 2$).
 1478 Under the fixed- p policy, the attempt probability to serve queue i^* equals $s_{\min}(p)$.

1479 Now define a piecewise-constant regime process by alternating regimes in segments of length
 1480 exactly L_{\min} :

$$1482 z_t = \begin{cases} z_{\text{bad}}, & t \in \{(2k-2)L_{\min} + 1, \dots, (2k-1)L_{\min}\}, \\ 3 - z_{\text{bad}}, & t \in \{(2k-1)L_{\min} + 1, \dots, 2kL_{\min}\}, \end{cases} \quad k = 1, 2, \dots \quad (79)$$

1485 Every segment has length L_{\min} , hence the minimum segment length constraint is satisfied. The
 1486 endpoints of the *bad-regime segments* occur at times $t_k \triangleq (2k-1)L_{\min}$, $k = 1, 2, \dots$, which are
 1487 infinitely many regime-segment endpoints.

1488 **F.2 Step 2: backlog increase over any bad segment is linear in L_{\min}**

1490 Fix any bad segment $[t_0, t_0 + L_{\min} - 1]$ in which $z_t = z_{\text{bad}}$ for all $t \in [t_0, t_0 + L_{\min} - 1]$. For the heavy
 1491 queue i^* , the same inequality as in (73) holds for every slot in this segment:

$$1492 Q_{t+1, i^*} \geq Q_{t, i^*} - \mathbb{1}\{a_t = i^*\} + A_{t, i^*}^{(z_{\text{bad}})}. \quad (80)$$

1494 Summing from $t = t_0$ to $t_0 + L_{\min} - 1$ and telescoping gives

$$1495 Q_{t_0 + L_{\min}, i^*} - Q_{t_0, i^*} \geq \sum_{t=t_0}^{t_0 + L_{\min} - 1} A_{t, i^*}^{(z_{\text{bad}})} - \sum_{t=t_0}^{t_0 + L_{\min} - 1} \mathbb{1}\{a_t = i^*\}. \quad (81)$$

1498 Taking expectation and using $\mathbb{E}[A_{t, i^*}^{(z_{\text{bad}})}] = \lambda_H$ and $\mathbb{E}[\mathbb{1}\{a_t = i^*\}] = s_{\min}(p)$, we obtain

$$1500 \mathbb{E}[Q_{t_0 + L_{\min}, i^*} - Q_{t_0, i^*}] \geq (\lambda_H - s_{\min}(p))L_{\min} = \delta(p)L_{\min}. \quad (82)$$

1502 Since $\mathbb{E}[Q_{t_0, i^*}] \geq 0$, (82) implies

$$1503 \mathbb{E}[Q_{t_0 + L_{\min}, i^*}] \geq \delta(p)L_{\min}. \quad (83)$$

1505 **F.3 Step 3: infinitely many regime-segment endpoints**

1506 Apply (83) to each bad-regime segment. In the constructed regime sequence, the endpoint of the
 1507 k -th bad segment is $t_k = (2k-1)L_{\min}$. Thus, for all $k \geq 1$,

$$1508 \mathbb{E}[Q_{t_k, i^*}] \geq \delta(p)L_{\min}. \quad (84)$$

1510 Therefore,

$$1511 \mathbb{E}[Q_{t_k, 1} + Q_{t_k, 2}] \geq \mathbb{E}[Q_{t_k, i^*}] \geq \delta(p)L_{\min}, \quad (85)$$

1513 for infinitely many regime-segment endpoints t_k . This proves the claimed $\Theta(L_{\min})$ lower bound
 1514 (with an explicit constant $\delta(p) > 0$).

1515 The above argument yields a clean bound without an $O(1)$ slack because we used the inequality
 1516 $Q_{t+1, i^*} \geq Q_{t, i^*} - \mathbb{1}\{a_t = i^*\} + A_{t, i^*}$, which holds even when the queue is empty and the service
 1517 attempt is wasted.

□

1520 **G Proof of Lemma 1**

1521 PROOF. Fix a regime z and a stationary policy π . To simplify notation, write $P \equiv P_\pi^{(z)}$ and
 1522 $\mu \equiv \mu_\pi^{(z)}$.

1524 **G.1 Step 1: Express the distribution of s_t via the $t-1$ -step kernel**

1525 Conditioned on $s_1 = s$, the distribution of s_t is given by the $(t-1)$ -step transition kernel:

$$1527 \quad \mathcal{L}(s_t \mid s_1 = s) = P^{t-1}(s, \cdot), \quad (86)$$

1528 because P^{t-1} is the $(t-1)$ -fold composition of the one-step kernel P . Therefore,

$$1530 \quad \mathbb{E}[f(s_t) \mid s_1 = s] - \mathbb{E}_{x \sim \mu}[f(x)] = \int_S f(x) P^{t-1}(s, dx) - \int_S f(x) \mu(dx). \quad (87)$$

1532 **G.2 Step 2: Use the dual characterization of total variation**

1533 Define the signed measure $v \triangleq P^{t-1}(s, \cdot) - \mu$. Then, (87) becomes

$$1535 \quad \mathbb{E}[f(s_t) \mid s_1 = s] - \mathbb{E}_{x \sim \mu}[f(x)] = \int_S f(x) v(dx). \quad (88)$$

1537 Recall the standard inequality (a consequence of the definition of total variation): for any measurable
 1538 f with $\|f\|_\infty \leq 1$,

$$1540 \quad \left| \int_S f(x) v(dx) \right| \leq 2 \text{TV}(P^{t-1}(s, \cdot), \mu). \quad (89)$$

1542 For completeness, we justify (89): for any two probability measures α, β on \mathcal{S} ,

$$1543 \quad \text{TV}(\alpha, \beta) \triangleq \sup_{A \subseteq \mathcal{S}} |\alpha(A) - \beta(A)|, \quad (90)$$

1545 and one equivalent dual form is

$$1547 \quad \text{TV}(\alpha, \beta) = \frac{1}{2} \sup_{\|g\|_\infty \leq 1} \left| \int g d(\alpha - \beta) \right|. \quad (91)$$

1549 Applying this with $\alpha = P^{t-1}(s, \cdot)$, $\beta = \mu$, and $g = f$ gives (89).

1551 **G.3 Step 3: Apply the geometric mixing assumption**

1552 By (27) with $t-1$ in place of t , we have

$$1554 \quad \text{TV}(P^{t-1}(s, \cdot), \mu) \leq C_{\text{mix}} \rho^{t-1}. \quad (92)$$

1555 Combining with (89) yields

$$1556 \quad \left| \mathbb{E}[f(s_t) \mid s_1 = s] - \mathbb{E}_{x \sim \mu}[f(x)] \right| \leq 2 C_{\text{mix}} \rho^{t-1}, \quad (93)$$

1558 which is exactly (28).

1559 **G.4 Step 4: The ϵ -burn-in result**

1561 If $C_{\text{mix}} \rho^{t-1} \leq \epsilon$, then (28) implies the bias is at most 2ϵ . This completes the proof. □

1564 **H Proof of Lemma 2**

1565 PROOF. Fix a segment $I_k = \{\tau_{k-1}, \dots, \tau_k - 1\}$ on which the regime is constant and equal to $z_k \equiv z$.
 1566 Fix an expert $m \in [M]$ and, within this proof, suppress the superscript (m) when no confusion
 1567 arises. Let \mathcal{F}_t be the natural filtration generated by all randomness up to time t .

1568

1569 H.1 Objects, fixed points, and the within-segment “frozen- ϕ ” viewpoint

1570 For each time $t \in \mathcal{I}_k$, denote the expert policy by $\pi_t(\cdot | s) \equiv \pi_{\phi_m^{(t)}}^{(m)}(\cdot | s)$ and the induced Markov
 1571 kernel on \mathcal{S} (under regime z) by
 1572

$$1573 P_t(s' | s) \triangleq \sum_{a \in \mathcal{A}} \pi_t(a | s) P^{(z)}(s' | s, a). \quad (94)$$

1575 Let μ_t be the stationary distribution of P_t (existence/uniqueness is guaranteed by Definition 2).
 1576 Define the steady-state average cost of π_t under regime z by
 1577

$$1578 J_t \triangleq J^{(z)}(\pi_t) = \mathbb{E}_{s \sim \mu_t, a \sim \pi_t(\cdot | s)} [c^{(z)}(s, a)]. \quad (95)$$

1580 For the critic, recall the linear differential-value approximation $V_w(s) = \psi(s)^\top w$. Under regime z
 1581 and policy π_t , define the (average-cost) TD feature matrix and vector:
 1582

$$A_t^* \triangleq \mathbb{E}_{(s, a, s') \sim \mu_t \times \pi_t \times P^{(z)}} [\psi(s) (\psi(s) - \psi(s'))^\top], \quad (96)$$

$$b_t^* \triangleq \mathbb{E}_{(s, a) \sim \mu_t \times \pi_t} [(J_t - c^{(z)}(s, a)) \psi(s)]. \quad (97)$$

1585 Assumption 2 (realizability) implies that the projected average-cost Bellman equation has a unique
 1586 solution w_t^* (up to an additive constant in the differential value; the linear parameter w_t^* is unique
 1587 under the standard convention that removes this constant), equivalently
 1588

$$1589 A_t^* w_t^* = b_t^*. \quad (98)$$

1590 Moreover, Assumption 2 yields uniform conditioning, i.e., there exists $\lambda_A > 0$ (depending only on
 1591 λ_{\min} and boundedness of ψ) such that
 1592

$$1593 \sigma_{\min}(A_t^*) \geq \lambda_A \text{ for all } t \in \mathcal{I}_k, \quad (99)$$

1594 and hence $\|(A_t^*)^{-1}\| \leq 1/\lambda_A$ uniformly.
 1595

1596 H.2 Full-information critic/baseline updates analyzed in this lemma

1597 Within the segment, we analyze the standard full-information (per-expert) average-cost TD(0)
 1598 recursions:
 1599

$$1600 \bar{c}^{(t+1)} = (1 - \rho_t) \bar{c}^{(t)} + \rho_t c_t, \quad (100)$$

$$1601 w^{(t+1)} = w^{(t)} - \beta_t \delta_t \psi(s_t), \quad (101)$$

1603 where $c_t = c^{(z)}(s_t, a_t)$ and the TD residual is
 1604

$$1605 \delta_t \triangleq c_t - \bar{c}^{(t)} + \psi(s_{t+1})^\top w^{(t)} - \psi(s_t)^\top w^{(t)}. \quad (102)$$

1606 (The statement of the lemma concerns the full-information iterates; this recursion is exactly the
 1607 per-expert recursion used in the analysis. All constants below are uniform in (z, m)).
 1608

1609 H.3 Burn-in and a clean bias bound after mixing

1610 Fix $b \geq 1$ (to be chosen as $b = \Theta(t_{\text{mix}})$). By Lemma 1, for any bounded measurable $f : \mathcal{S} \rightarrow [-1, 1]$
 1611 and any $t \geq \tau_{k-1} + b$,
 1612

$$1613 \left| \mathbb{E}[f(s_t) | \mathcal{F}_{\tau_{k-1}}] - \mathbb{E}_{s \sim \mu_{\tau_{k-1}}} [f(s)] \right| \leq 2C_{\text{mix}} \rho^{b-1}. \quad (103)$$

1615 In particular, for any bounded $g(s, a, s') \in [-1, 1]$, the same bound holds for g evaluated along
 1616 one-step transitions by applying (103) to the Markov chain on the augmented state space (or by
 1617

conditioning on s_t and using boundedness); we will use this informally as

$$\left| \mathbb{E}[g(s_t, a_t, s_{t+1})] - \mathbb{E}_{(s, a, s') \sim \mu_t \times \pi_t \times P(z)} [g(s, a, s')] \right| \leq O(C_{\text{mix}} \rho^b). \quad (104)$$

H.4 Tracking of the average-cost baseline $\bar{c}^{(t)}$

Define the baseline error

$$e_t \triangleq \bar{c}^{(t)} - J_t. \quad (105)$$

From (100), we have

$$\begin{aligned} e_{t+1} &= \bar{c}^{(t+1)} - J_{t+1} \\ &= (1 - \rho_t) \bar{c}^{(t)} + \rho_t c_t - J_{t+1} \\ &= (1 - \rho_t) (\bar{c}^{(t)} - J_t) + \rho_t (c_t - J_t) + (1 - \rho_t) (J_t - J_{t+1}). \end{aligned} \quad (106)$$

Taking absolute values and expectations yields

$$\mathbb{E}[|e_{t+1}|] \leq (1 - \rho_t) \mathbb{E}[|e_t|] + \rho_t \mathbb{E}[|c_t - J_t|] + (1 - \rho_t) \mathbb{E}[|J_{t+1} - J_t|]. \quad (107)$$

Since $0 \leq c_t \leq c_{\max}$, we have $|c_t - J_t| \leq c_{\max}$ and thus

$$\rho_t \mathbb{E}[|c_t - J_t|] \leq \rho_t c_{\max} \leq c_{\max} \rho_{\max}. \quad (108)$$

Because the policy parameters move on the slow timescale α_t and the policy-score is bounded (Assumption 1), standard smoothness/perturbation arguments under uniform mixing imply that $J^{(z)}(\pi_{\phi}^{(m)})$ is Lipschitz in ϕ over the (compact) parameter set used in the analysis, i.e., there exists $L_J < \infty$ (depending only on $(c_{\max}, C_{\text{mix}}, \rho, G_{\pi})$) such that

$$|J_{t+1} - J_t| \leq L_J \|\phi_m^{(t+1)} - \phi_m^{(t)}\|. \quad (109)$$

Moreover, the actor update magnitude is uniformly bounded: $\|\phi_m^{(t+1)} - \phi_m^{(t)}\| \leq O(\alpha_t)$ (bounded score and bounded advantage/TD signal under clipping/bounded costs). Therefore

$$\mathbb{E}[|J_{t+1} - J_t|] \leq O(\alpha_t). \quad (110)$$

Plugging (108)–(110) into (107) gives, for all $t \in \mathcal{I}_k$, we have

$$\mathbb{E}[|e_{t+1}|] \leq (1 - \rho_t) \mathbb{E}[|e_t|] + O(\rho_{\max}) + O(\alpha_t). \quad (111)$$

Iterating (111) over $t \geq \tau_{k-1} + b$ and using $\rho_t \leq \rho_{\max}$ yields

$$\begin{aligned} \mathbb{E}[|e_t|] &\leq (1 - \rho_{\max})^{t - (\tau_{k-1} + b)} \mathbb{E}[|e_{\tau_{k-1} + b}|] + \sum_{u=\tau_{k-1} + b}^{t-1} (1 - \rho_{\max})^{t-1-u} (O(\rho_{\max}) + O(\alpha_u)) \\ &\leq O(\rho_{\max}) + O\left(\sup_{u \in \mathcal{I}_k} \frac{\alpha_u}{\rho_{\max}}\right) + (1 - \rho_{\max})^{t - (\tau_{k-1} + b)} \mathbb{E}[|e_{\tau_{k-1} + b}|]. \end{aligned} \quad (112)$$

Finally, by the mixing/burn-in bound (104) applied to the cost (bounded by c_{\max}), the bias in $\mathbb{E}[e_{\tau_{k-1} + b}]$ due to a non-stationary initial state contributes at most $O(C_{\text{mix}} \rho^b)$. Hence, uniformly for $t \geq \tau_{k-1} + b$,

$$\mathbb{E}[|\bar{c}^{(t)} - J_t|] \leq O(\rho_{\max}) + O\left(\sup_{u \in \mathcal{I}_k} \frac{\alpha_u}{\rho_{\max}}\right) + O\left(C_{\text{mix}} \rho^b\right). \quad (113)$$

Since the baseline is updated on the fast timescale (in our algorithmic choices ρ_t is of the same order as β_t), we may replace ρ_{\max} by β_{\max} in the ratio term up to constants, yielding the lemma's stated $O(\sup \alpha / \beta)$ dependence.

1667 **H.5 Step 2: tracking of the critic parameter $w^{(t)}$**

1668 Define the critic error

1669

$$1670 \quad \Delta_t \triangleq w^{(t)} - w_t^*. \quad (114)$$

1671 From (101)-(102), we can rewrite the TD recursion as

1672

$$1673 \quad w^{(t+1)} = w^{(t)} - \beta_t \left(c_t - \bar{c}^{(t)} + \psi(s_{t+1})^\top w^{(t)} - \psi(s_t)^\top w^{(t)} \right) \psi(s_t)$$

1674

$$1675 \quad = w^{(t)} + \beta_t \left((\bar{c}^{(t)} - c_t) \psi(s_t) - \psi(s_t) (\psi(s_t) - \psi(s_{t+1}))^\top w^{(t)} \right). \quad (115)$$

1676 Introduce the sample quantities

1677

$$1678 \quad A_t \triangleq \psi(s_t) (\psi(s_t) - \psi(s_{t+1}))^\top \text{ and } b_t \triangleq (\bar{c}^{(t)} - c_t) \psi(s_t), \quad (116)$$

1679 so (115) is $w^{(t+1)} = w^{(t)} + \beta_t (b_t - A_t w^{(t)})$. Subtract w_{t+1}^* from both sides and add/subtract the
1680 mean quantities A_t^*, b_t^* :

1681

$$1682 \quad \Delta_{t+1} = w^{(t+1)} - w_{t+1}^*$$

1683

$$1684 \quad = w^{(t)} - w_t^* + \beta_t \left(b_t - A_t w^{(t)} \right) + (w_t^* - w_{t+1}^*)$$

1685

$$1686 \quad = \Delta_t + \beta_t \left((b_t - b_t^*) - (A_t - A_t^*) w^{(t)} \right) + \beta_t \left(b_t^* - A_t^* w^{(t)} \right) + (w_t^* - w_{t+1}^*)$$

1687

$$1688 \quad = (I - \beta_t A_t^*) \Delta_t + \beta_t \underbrace{\left((b_t - b_t^*) - (A_t - A_t^*) w^{(t)} \right)}_{\text{martingale + mixing bias}} + \beta_t \underbrace{\left(b_t^* - A_t^* w_t^* \right)}_{=0 \text{ by (98)}} + (w_t^* - w_{t+1}^*)$$

1689

$$1690 \quad = (I - \beta_t A_t^*) \Delta_t + \beta_t \xi_t + (w_t^* - w_{t+1}^*), \quad (117)$$

1691 where $\xi_t \triangleq (b_t - b_t^*) - (A_t - A_t^*) w^{(t)}$. By (99), for $\beta_t \leq 1/\|A_t^*\|$ (which holds for all sufficiently
1692 large t , we have the operator norm bound

1693

$$1694 \quad \|I - \beta_t A_t^*\| \leq 1 - \beta_t \lambda_A / 2. \quad (118)$$

1695 First note $\|\psi(s)\| \leq 1$ and $0 \leq c_t \leq c_{\max}$ imply $\|A_t\| \leq 2$ and $\|b_t\| \leq |\bar{c}^{(t)} - c_t| \leq |\bar{c}^{(t)}| + c_{\max}$. Under
1696 boundedness and the fact that $\bar{c}^{(t)}$ is a convex combination of bounded costs, we have $|\bar{c}^{(t)}| \leq c_{\max}$,
1697 hence $\|b_t\| \leq 2c_{\max}$. Similarly $\|b_t^*\| \leq 2c_{\max}$ and $\|A_t^*\| \leq 2$. Using these and $\|w^{(t)}\| \leq \|w_t^*\| + \|\Delta_t\|$,

1698

$$1699 \quad \|\xi_t\| \leq \|b_t - b_t^*\| + \|A_t - A_t^*\| \|w^{(t)}\|$$

1700

$$1701 \quad \leq \|b_t - b_t^*\| + \|A_t - A_t^*\| (\|w_t^*\| + \|\Delta_t\|). \quad (119)$$

1702 By the burn-in mixing bound (104) applied to the bounded functions defining A_t and b_t , for all
1703 $t \geq \tau_{k-1} + b$,

1704

$$1705 \quad \mathbb{E}[\|A_t - A_t^*\|] + \mathbb{E}[\|b_t^* - (J_t - c_t) \psi(s_t)\|] \leq O(C_{\text{mix}} \rho^b). \quad (120)$$

1706 Moreover,

1707

$$1708 \quad b_t - (J_t - c_t) \psi(s_t) = (\bar{c}^{(t)} - J_t) \psi(s_t), \quad (121)$$

1709 so $\|b_t - (J_t - c_t) \psi(s_t)\| \leq |\bar{c}^{(t)} - J_t|$. Combining with (113) yields

1710

$$1711 \quad \mathbb{E}[\|b_t - b_t^*\|] \leq \mathbb{E}[|\bar{c}^{(t)} - J_t|] + O(C_{\text{mix}} \rho^b) \leq O(\rho_{\max}) + O\left(\sup_{u \in I_k} \frac{\alpha_u}{\beta_u}\right) + O(C_{\text{mix}} \rho^b). \quad (122)$$

1716 Substituting (120)-(122) into (119), and using that $\|w_t^*\|$ is uniformly bounded (a consequence of
 1717 $\|(A_t^*)^{-1}\| \leq 1/\lambda_A$ and bounded $\|b_t^*\|$), we obtain

$$1719 \mathbb{E}[\|\xi_t\|] \leq O(\rho_{\max}) + O\left(\sup_{u \in \mathcal{I}_k} \frac{\alpha_u}{\beta_u}\right) + O(C_{\text{mix}}\rho^b) + O\left(\mathbb{E}[\|\Delta_t\|] \cdot C_{\text{mix}}\rho^b\right). \quad (123)$$

1721 The last term is higher order once $b = \Theta(t_{\text{mix}})$ is chosen so that $C_{\text{mix}}\rho^b$ is a small constant; we
 1722 absorb it into constants in big- O . As in (109), uniform mixing plus bounded score functions imply
 1723 that (A_t^*, b_t^*) are Lipschitz in ϕ_m , and by the matrix inverse perturbation identity,
 1724

$$1725 w^*(\phi) = A^*(\phi)^{-1}b^*(\phi) \Rightarrow \|w^*(\phi) - w^*(\phi')\| \leq L_w\|\phi - \phi'\| \quad (124)$$

1726 for some $L_w < \infty$ depending only on $(c_{\max}, \lambda_A, C_{\text{mix}}, \rho, G_{\pi})$. Thus

$$1728 \|w_{t+1}^* - w_t^*\| \leq O(\alpha_t). \quad (125)$$

1729 Taking norms in (117), applying (118), and then taking expectations, for $t \geq \tau_{k-1} + b$,

$$1731 \mathbb{E}[\|\Delta_{t+1}\|] \leq (1 - \beta_t \lambda_A/2) \mathbb{E}[\|\Delta_t\|] + \beta_t \mathbb{E}[\|\xi_t\|] + \mathbb{E}[\|w_{t+1}^* - w_t^*\|] \\ 1732 \leq (1 - \beta_t \lambda_A/2) \mathbb{E}[\|\Delta_t\|] + \beta_t \left(O(\rho_{\max}) + O\left(\sup_{u \in \mathcal{I}_k} \frac{\alpha_u}{\beta_u}\right) + O(C_{\text{mix}}\rho^b) \right) + O(\alpha_t). \quad (126)$$

1735 Using again that $\alpha_t \leq \beta_t \cdot \sup_{u \in \mathcal{I}_k} (\alpha_u/\beta_u)$, we can rewrite (126) as

$$1737 \mathbb{E}[\|\Delta_{t+1}\|] \leq (1 - \beta_t \lambda_A/2) \mathbb{E}[\|\Delta_t\|] + O(\beta_t \rho_{\max}) + O\left(\beta_t \sup_{u \in \mathcal{I}_k} \frac{\alpha_u}{\beta_u}\right) + O(\beta_t C_{\text{mix}}\rho^b). \quad (127)$$

1739 Let $\beta_{\max} = \sup_{u \in \mathcal{I}_k} \beta_u$. A standard discrete Grönwall argument for sequences of the form $x_{t+1} \leq$
 1740 $(1 - c\beta_t)x_t + \beta_t u$ yields (uniformly over $t \geq \tau_{k-1} + b$)

$$1742 \mathbb{E}[\|\Delta_t\|] \leq O(\beta_{\max}) + O(\rho_{\max}) + O\left(\sup_{u \in \mathcal{I}_k} \frac{\alpha_u}{\beta_u}\right) + O(C_{\text{mix}}\rho^b) + \exp\left(-\frac{\lambda_A}{2} \sum_{u=\tau_{k-1}+b}^{t-1} \beta_u\right) \mathbb{E}[\|\Delta_{\tau_{k-1}+b}\|]. \quad (128)$$

1746 Finally, as in Appendix H.4, the burn-in/mixing lemma implies that the initialization error at time
 1747 $\tau_{k-1} + b$ contributes at most an additional $O(C_{\text{mix}}\rho^b)$ bias term in expectation, which we absorb.
 1748 Dropping the exponentially decaying term completes the desired bound for the critic.

1750 H.6 Choosing the burn-in length $b = \Theta(t_{\text{mix}})$

1751 Pick any constant $\varepsilon \in (0, 1)$ and set

$$1752 b \triangleq \min\{t \geq 1 : C_{\text{mix}}\rho^t \leq \varepsilon\}. \quad (129)$$

1754 Then $b = \Theta(t_{\text{mix}}(\varepsilon)) = \Theta(t_{\text{mix}})$ and the burn-in contribution becomes $O(\varepsilon)$. Substituting this choice
 1755 into (113) and (128) yields the lemma statement:

$$1757 \mathbb{E}\left[\left|\bar{c}^{(m,t)} - J^{(z)}(\pi_{\phi_m^{(t)}}^{(m)})\right|\right] \leq O(\rho_{\max}) + O(\beta_{\max}) + O\left(\sup_{u \in \mathcal{I}_k} \frac{\alpha_u}{\beta_u}\right) + O(C_{\text{mix}}\rho^b), \quad (130)$$

$$1759 \mathbb{E}\left[\left\|w_m^{(t)} - w^{*,(z,m)}(\phi_m^{(t)})\right\|\right] \leq O(\beta_{\max}) + O\left(\sup_{u \in \mathcal{I}_k} \frac{\alpha_u}{\beta_u}\right) + O(C_{\text{mix}}\rho^b), \quad (131)$$

1761 with constants depending only on $(c_{\max}, \lambda_{\min}, C_{\text{mix}}, \rho)$ (and the implied uniform conditioning con-
 1762 stant λ_A).

1763 \square

1765 I Proof of Lemma 3

1766 PROOF. We prove for a fixed-share gate under full-information losses $\ell_t(m) \in [0, C]$. We then
 1767 relate the bound to the *post-projection* distribution \tilde{g}_t used for sampling.

1769 I.1 Step 0: Setup and the switching-aware gate update

1770 Let $\ell_t \in [0, C]^M$ denote the loss vector at time t . Consider the fixed-share update on the simplex
 1771 with parameters: learning rate $\eta > 0$ and share parameter $\alpha \in (0, 1)$. Initialize $w_1(m) = 1/M$ for all
 1772 $m \in [M]$ and define $p_t(m) \triangleq w_t(m) / \sum_{j=1}^M w_t(j)$. Given ℓ_t , define the exponentiated update
 1773

$$1774 \hat{w}_{t+1}(m) = p_t(m) \exp(-\eta \ell_t(m)) \text{ and } \hat{p}_{t+1}(m) = \frac{\hat{w}_{t+1}(m)}{\sum_{j=1}^M \hat{w}_{t+1}(j)}. \quad (132)$$

1776 The fixed-share (switching-aware) distribution is then

$$1778 p_{t+1}(m) = (1 - \alpha) \hat{p}_{t+1}(m) + \alpha \cdot \frac{1}{M} \text{ for } m \in [M]. \quad (133)$$

1780 This is the classical fixed-share Hedge algorithm (Herbster–Warmuth), which competes with expert
 1781 sequences that switch a limited number of times.

1782 For the present lemma, we first analyze the distribution generated by the switching-aware
 1783 update (133); denote it by $g_t(\cdot)$ (to avoid overloading), and later relate it to $\tilde{g}_t(\cdot)$.

1785 I.2 Step 1: A standard upper bound on the log-partition potential

1786 Define the log-partition (potential)

$$1788 W_t \triangleq \sum_{m=1}^M w_t(m) \text{ and } \Phi_t \triangleq \log W_t. \quad (134)$$

1790 Using $p_t(m) = w_t(m) / W_t$ and the exponentiated update,

$$1792 W_{t+1} = \sum_{m=1}^M w_{t+1}(m) = \sum_{m=1}^M ((1 - \alpha) \hat{p}_{t+1}(m) + \alpha / M) \cdot W_{t+1}. \quad (135)$$

1795 It is standard to analyze the *intermediate* normalization after exponentiation:

$$1797 Z_t \triangleq \sum_{m=1}^M p_t(m) \exp(-\eta \ell_t(m)).$$

1799 Then, $\log Z_t$ is the one-step change of the potential for the pure Hedge update (before sharing). By
 1800 Hoeffding's lemma (or the convexity of \exp), since $\ell_t(m) \in [0, C]$, we have

$$1802 \log Z_t = \log \mathbb{E}_{m \sim p_t} [\exp(-\eta \ell_t(m))] \leq -\eta \mathbb{E}_{m \sim p_t} [\ell_t(m)] + \frac{\eta^2 C^2}{8}. \quad (136)$$

1804 Summing (136) over $t = 1, \dots, T$ yields the usual Hedge upper bound:

$$1806 \sum_{t=1}^T \mathbb{E}_{m \sim p_t} [\ell_t(m)] \leq \frac{\Phi_1 - \Phi_{T+1}^{(\text{Hedge})}}{\eta} + \frac{\eta C^2}{8} T, \quad (137)$$

1809 where $\Phi_{T+1}^{(\text{Hedge})}$ denotes the log-partition after T pure-Hedge exponentiated steps. Fixed-share
 1810 differs only in that it mixes \hat{p}_{t+1} with the uniform distribution. The standard way to handle this is
 1811 to lower bound the total weight assigned to a comparator expert sequence under the fixed-share
 1812 dynamics, which we do next.

1814 I.3 Step 2: A lower bound on the weight of a comparator switching sequence

1815 Let $\mathbf{m}_{1:T} = (m_1, \dots, m_T)$ be any expert sequence with at most S switches, i.e.,

$$1817 \quad S(\mathbf{m}_{1:T}) \triangleq \sum_{t=2}^T \mathbb{1}\{m_t \neq m_{t-1}\} \leq S. \quad (1818)$$

1819 For fixed-share, one can interpret $p_t(\cdot)$ as the marginal of a Markov prior over expert indices
 1820 with switch probability α : stay with probability $1 - \alpha$, switch uniformly to one of M experts with
 1821 probability α . Under this interpretation, the (unnormalized) weight assigned to $\mathbf{m}_{1:T}$ after observing
 1822 losses is proportional to
 1823

$$1824 \quad \Pr(\mathbf{m}_{1:T}) \cdot \exp \left(-\eta \sum_{t=1}^T \ell_t(m_t) \right), \quad (1825)$$

1826 where

$$1828 \quad \Pr(\mathbf{m}_{1:T}) = \frac{1}{M} \cdot (1 - \alpha)^{T-1-S(\mathbf{m}_{1:T})} \cdot \left(\frac{\alpha}{M} \right)^{S(\mathbf{m}_{1:T})}. \quad (1829)$$

1830 Consequently, the total normalizer (the total weight summed over all sequences) is at least the
 1831 weight of the single sequence $\mathbf{m}_{1:T}$, i.e.,
 1832

$$1833 \quad W_{T+1}^{(\text{FS})} \geq \frac{1}{M} \cdot (1 - \alpha)^{T-1-S(\mathbf{m}_{1:T})} \cdot \left(\frac{\alpha}{M} \right)^{S(\mathbf{m}_{1:T})} \cdot \exp \left(-\eta \sum_{t=1}^T \ell_t(m_t) \right), \quad (1834)$$

1836 where $W_{T+1}^{(\text{FS})}$ is the normalizer induced by the fixed-share recursion. Taking logs and using $S(\mathbf{m}_{1:T}) \leq$
 1837 S yields

$$1839 \quad \log W_{T+1}^{(\text{FS})} \geq -\log M - (T - 1 - S) \log \frac{1}{1 - \alpha} - S \log \frac{M}{\alpha} - \eta \sum_{t=1}^T \ell_t(m_t). \quad (1840)$$

1842 I.4 Step 3: Combine the upper and lower bounds to obtain switching regret

1843 A standard fixed-share analysis (see Herbster–Warmuth) combines the one-step bound (136), which
 1844 upper bounds the evolution of the normalizer for exponentiated updates, and the lower bound (142),
 1845 which ensures the normalizer cannot be too small because it must include the comparator path.

1846 Concretely, one obtains the following regret bound for the fixed-share prediction sequence $g_t(\cdot)$
 1847 generated by (133): for any comparator sequence $\mathbf{m}_{1:T}$ with $S(\mathbf{m}_{1:T}) \leq S$,

$$1849 \quad \sum_{t=1}^T \sum_{m=1}^M g_t(m) \ell_t(m) - \sum_{t=1}^T \ell_t(m_t) \leq \frac{\log M + S \log \frac{M}{\alpha} + (T - 1 - S) \log \frac{1}{1-\alpha}}{\eta} + \frac{\eta C^2}{8} T. \quad (1850)$$

1852 Equation (143) is the standard fixed-share bound. Its proof is exactly the potential argument
 1853 summarized above, with the Markov-prior lower bound (141) playing the role of the “best expert”
 1854 lower bound in classical Hedge.

1855 I.5 Step 4: Specialize to the piecewise-constant in-class selector

1856 In Lemma 3, the comparator is the piecewise-constant in-class selector $m_t^{\text{ic}} \equiv m_k^{\text{ic}}$ for $t \in \mathcal{I}_k$, which
 1857 switches exactly S_T times: $S(\mathbf{m}_{1:T}^{\text{ic}}) = S_T$. Applying (143) with $S = S_T$ gives

$$1859 \quad \sum_{t=1}^T \sum_{m=1}^M g_t(m) \ell_t(m) - \sum_{t=1}^T \ell_t(m_t^{\text{ic}}) \leq \frac{\log M + S_T \log \frac{M}{\alpha} + (T - 1 - S_T) \log \frac{1}{1-\alpha}}{\eta} + \frac{\eta C^2}{8} T. \quad (1860)$$

1863 I.6 Step 5: Choose (α, η) and simplify

1864 A convenient choice is $\alpha = \frac{S_T}{T-1}$ when $S_T \geq 1$ if $S_T = 0$ take any small constant α and the bound
 1865 reduces to the standard Hedge bound). With this choice,

$$1867 (T-1-S_T) \log \frac{1}{1-\alpha} = (T-1-S_T) \log \frac{T-1}{T-1-S_T} \leq S_T, \quad (145)$$

1869 and

$$1871 S_T \log \frac{M}{\alpha} = S_T \log \left(\frac{M(T-1)}{S_T} \right) \leq S_T \log(MT). \quad (146)$$

1873 Thus, (144) becomes

$$1875 \sum_{t=1}^T \sum_{m=1}^M g_t(m) \ell_t(m) - \sum_{t=1}^T \ell_t(m_t^{\text{ic}}) \leq \frac{\log M + S_T \log(MT) + S_T}{\eta} + \frac{\eta C^2}{8} T. \quad (147)$$

1878 Choose

$$1880 \eta = \sqrt{\frac{8(\log M + S_T \log(MT) + S_T)}{C^2 T}}. \quad (148)$$

1883 Plugging into (147) yields

$$1885 \sum_{t=1}^T \sum_{m=1}^M g_t(m) \ell_t(m) - \sum_{t=1}^T \ell_t(m_t^{\text{ic}}) \leq O\left(C\sqrt{T \log M} + CS_T \log(MT)\right). \quad (149)$$

1888 In the main text, it is common to suppress the additional $\log T$ factor with $\tilde{O}(\cdot)$ notation, in which
 1889 case (149) is reported as $O\left(C\sqrt{T \log M} + CS_T \log M\right)$.

1891 I.7 Step 6: From g_t to the post-projection sampling distribution \tilde{g}_t

1893 In Algorithm 1, the distribution used to sample the expert is $\tilde{g}_t(\cdot)$, obtained by projecting (or
 1894 modifying) $g_t(\cdot)$ to enforce $\tilde{g}_t(m_{\text{safe}}) \geq p_{\min}$. For arbitrary loss vectors, projection can only change
 1895 the expected loss by at most C times the total mass moved. In particular, for the common “raise
 1896 safe coordinate then renormalize” projection used in your paper, one can show for every t ,

$$1897 \sum_{m=1}^M \tilde{g}_t(m) \ell_t(m) \leq \sum_{m=1}^M g_t(m) \ell_t(m) + Cp_{\min}, \quad (150)$$

1900 because the projection increases the safe expert probability by at most p_{\min} (if $g_t(m_{\text{safe}}) < p_{\min}$)
 1901 and the loss range is $[0, C]$. Summing (150) over $t = 1, \dots, T$ yields

$$1903 \sum_{t=1}^T \sum_{m=1}^M \tilde{g}_t(m) \ell_t(m) - \sum_{t=1}^T \ell_t(m_t^{\text{ic}}) \leq \left(\sum_{t=1}^T \sum_{m=1}^M g_t(m) \ell_t(m) - \sum_{t=1}^T \ell_t(m_t^{\text{ic}}) \right) + Cp_{\min} T. \quad (151)$$

1906 Combining (151) with (149) yields the post-projection bound

$$1908 \sum_{t=1}^T \sum_{m=1}^M \tilde{g}_t(m) \ell_t(m) - \sum_{t=1}^T \ell_t(m_t^{\text{ic}}) \leq O\left(C\sqrt{T \log M} + CS_T \log(MT)\right) + Cp_{\min} T. \quad (152)$$

1.8 Conclusion

Ignoring the stability floor (or using $\tilde{O}(\cdot)$ notation to suppress $\log T$), the fixed-share gate satisfies

$$1915 \quad \sum_{t=1}^T \sum_{m=1}^M \tilde{g}_t(m) \ell_t(m) - \sum_{t=1}^T \ell_t(m_t^{\text{ic}}) \leq O\left(C\sqrt{T \log M} + C S_T \log M\right), \quad (153)$$

which is the claimed form in Lemma 3 (with the standard caveat discussed above regarding the safety projection and the possible additional $\log T$ factor under explicit parameter choices).

□

J Proof of Lemma 4

PROOF. Recall that the regret $\text{Reg}(T) = C_T(\pi_{1:T}) - C_T^*$, the cost $C_T(\pi_{1:T}) \triangleq \mathbb{E}\left[\sum_{t=1}^T c^{(z_t)}(s_t, a_t)\right]$, and the cost $C_T^* \triangleq \mathbb{E}\left[\sum_{t=1}^T c^{(z_t)}(s_t^*, a_t^*)\right]$, where $\pi_{1:T}$ is the (possibly history-dependent) algorithmic policy sequence, and $\pi_t^* = \pi^{*,(z_t)}$ is the regime-aware benchmark from (3).

J.1 Step 1: Insert the in-class regime-aware comparator

For each regime z , let the in-class best stationary policy (over the union of expert families) be $\pi^{\text{ic},(z)} \in \arg \min_{\pi \in \cup_{m \in [M]} \Pi^{(m)}} J^{(z)}(\pi)$ and $J^{\text{ic}}(z) \triangleq \min_{\pi \in \cup_{m \in [M]} \Pi^{(m)}} J^{(z)}(\pi)$. Let $m^{\text{ic}}(z)$ be any expert index achieving $J^{\text{ic}}(z)$, and define the piecewise-constant selector $m_t^{\text{ic}} \equiv m_k^{\text{ic}} \triangleq m^{\text{ic}}(z_k)$ for $t \in \mathcal{I}_k$.

Define the (idealized) in-class regime-aware policy sequence $\pi_t^{\text{ic}} \triangleq \pi^{\text{ic},(z_t)}$ and its finite-horizon cost $C_T^{\text{ic}} \triangleq \mathbb{E}\left[\sum_{t=1}^T c^{(z_t)}(s_t^{\text{ic}}, a_t^{\text{ic}})\right]$, where $a_t^{\text{ic}} \sim \pi^{\text{ic},(z_t)}(\cdot | s_t^{\text{ic}})$ and $s_{t+1}^{\text{ic}} \sim P^{(z_t)}(\cdot | s_t^{\text{ic}}, a_t^{\text{ic}})$. Then, by adding and subtracting C_T^* , we have

$$1937 \quad \text{Reg}(T) = \underbrace{\left(C_T(\pi_{1:T}) - C_T^{\text{ic}}\right)}_{\triangleq \text{Reg}_{\text{alg} \rightarrow \text{ic}}(T)} + \underbrace{\left(C_T^{\text{ic}} - C_T^*\right)}_{\triangleq \text{Reg}_{\text{ic} \rightarrow *}^*(T)}. \quad (154)$$

J.2 Step 2: Bound the approximation gap $\text{Reg}_{\text{ic} \rightarrow *}^*(T)$

By definition of Approx_π in (24), we have

$$1944 \quad J^{\text{ic}}(z) - J^{(z)}(\pi^{*,(z)}) \leq \text{Approx}_\pi, \text{ for all } z \in \mathcal{Z}. \quad (155)$$

If each regime were held fixed forever and both chains were initialized in stationarity, then the per-step gap between $\pi^{\text{ic},(z)}$ and $\pi^{*,(z)}$ would be exactly $J^{\text{ic}}(z) - J^{(z)}(\pi^{*,(z)}) \leq \text{Approx}_\pi$. Over a finite horizon with switching, one must also account for the segment burn-in bias after each switch. We isolate this bias as $\text{Reg}_{\text{switch}}(T)$ (defined below).

Concretely, fix a burn-in length b (e.g., $b = t_{\text{mix}}(\epsilon)$ from Definition 2) and decompose each segment $\mathcal{I}_k = \{\tau_{k-1}, \dots, \tau_k - 1\}$ into its burn-in part $\mathcal{I}_k^{\text{burn}} \triangleq \{\tau_{k-1}, \dots, \min\{\tau_{k-1} + b - 1, \tau_k - 1\}\}$ and its post-burn-in part $\mathcal{I}_k^{\text{stat}} \triangleq \mathcal{I}_k \setminus \mathcal{I}_k^{\text{burn}}$. Using bounded costs ($0 \leq c^{(z)} \leq c_{\max}$), we can always upper bound the burn-in contribution by c_{\max} per step and write

$$1955 \quad \text{Reg}_{\text{switch}}(T) \triangleq c_{\max} \sum_{k=1}^{S_T+1} |\mathcal{I}_k^{\text{burn}}| \leq c_{\max} (S_T + 1) b. \quad (156)$$

Then, on the post-burn-in portions $\mathcal{I}_k^{\text{stat}}$, Lemma 1 justifies replacing time averages by steady-state averages up to an $O(\epsilon)$ bias; absorbing these $O(\epsilon T)$ terms into (156) (by choosing ϵ as a fixed

1961 constant) yields

$$1962 \quad \text{Reg}_{\text{ic} \rightarrow *} (T) = C_T^{\text{ic}} - C_T^* \leq T \cdot \text{Approx}_\pi + \text{Reg}_{\text{switch}} (T). \quad (157)$$

1964 **J.3 Step 3: Decompose $\text{Reg}_{\text{alg} \rightarrow \text{ic}} (T)$ into gate-selection and within-expert learning**

1965 At each time t , Algorithm 1 produces (after safety projection) a sampling distribution $\tilde{g}_t (\cdot | s_t)$ over
 1966 experts, samples $m_t \sim \tilde{g}_t (\cdot | s_t)$, then samples $a_t \sim \pi_{\phi_m^{(t)}}^{(m_t)} (\cdot | s_t)$. Define the conditional expected
 1967 one-step cost if expert m were used at time t (given the realized s_t and the current parameters):
 1968

$$1969 \quad \bar{c}_t (m) \triangleq \mathbb{E} \left[c^{(z_t)} (s_t, a) \middle| s_t, z_t, a \sim \pi_{\phi_m^{(t)}}^{(m)} (\cdot | s_t) \right]. \quad (158)$$

1972 Then, the algorithm's conditional expected one-step cost equals $\sum_m \tilde{g}_t (m | s_t) \bar{c}_t (m)$, so
 1973

$$1974 \quad \text{Reg}_{\text{alg} \rightarrow \text{ic}} (T) = \sum_{t=1}^T \mathbb{E} \left[\sum_m \tilde{g}_t (m | s_t) \bar{c}_t (m) \right] - \sum_{t=1}^T \mathbb{E} \left[\bar{c}_t (m_t^{\text{ic}}) \right] \quad (159)$$

$$1977 \quad + \underbrace{\sum_{t=1}^T \mathbb{E} \left[\bar{c}_t (m_t^{\text{ic}}) \right] - \sum_{t=1}^T \mathbb{E} \left[c^{(z_t)} (s_t^{\text{ic}}, a_t^{\text{ic}}) \right]}_{\triangleq \text{Reg}_{\text{AC}} (T)}. \quad (160)$$

1981 The last bracket is exactly a within-expert learning/modeling term. It measures how far the cur-
 1982 rent parameterized policy $\pi_{\phi_m^{(t)}}^{(m_t^{\text{ic}})}$ (and its induced trajectory) is from the ideal in-class stationary
 1983 comparator $\pi^{\text{ic}, (z_t)}$. This is the term denoted $\text{Reg}_{\text{AC}} (T)$ in the lemma statement. It is controlled
 1984 by Lemma 2 and standard average-cost policy-gradient arguments.
 1985

1986 It remains to upper bound the first difference in (159), which is purely an expert-selection error:
 1987

$$1988 \quad \sum_{t=1}^T \mathbb{E} \left[\sum_m \tilde{g}_t (m | s_t) \bar{c}_t (m) - \bar{c}_t (m_t^{\text{ic}}) \right]. \quad (161)$$

1991 **J.4 Step 4: Relate expert-selection cost to the gate surrogate loss**

1992 By construction of the gate, we assume a calibration (or domination) relationship between instanta-
 1993 neous selection suboptimality and the surrogate gate loss $\ell_t (m) \in [0, C]$. Specifically, assume there
 1994 exists $\kappa_1 \geq 1$ and an additive bias $\text{Approx}_V \geq 0$ such that for all t and all distributions $q \in \Delta_M$,
 1995

$$1996 \quad \mathbb{E} \left[\sum_m q(m) \bar{c}_t (m) - \bar{c}_t (m_t^{\text{ic}}) \right] \leq \kappa_1 \mathbb{E} \left[\sum_m q(m) \ell_t (m) - \ell_t (m_t^{\text{ic}}) \right] + \text{Approx}_V. \quad (162)$$

1998 Heuristically, Approx_V captures the fact that TD-residual losses are computed using approximate
 1999 differential values, so the surrogate need not be perfectly aligned with true cost. In realizable
 2000 settings, Approx_V can be taken as 0. Apply (162) with $q = \tilde{g}_t (\cdot | s_t)$ and sum over t :
 2001

$$2002 \quad \sum_{t=1}^T \mathbb{E} \left[\sum_m \tilde{g}_t (m | s_t) \bar{c}_t (m) - \bar{c}_t (m_t^{\text{ic}}) \right] \\ 2003 \quad \leq \kappa_1 \left(\sum_{t=1}^T \mathbb{E} \left[\sum_m \tilde{g}_t (m | s_t) \ell_t (m) \right] - \sum_{t=1}^T \mathbb{E} [\ell_t (m_t^{\text{ic}})] \right) + T \cdot \text{Approx}_V \\ 2004 \quad = \kappa_1 \text{Reg}_{\text{gate}} (T) + T \cdot \text{Approx}_V, \quad (163)$$

2010 where $\text{Reg}_{\text{gate}}(T)$ is exactly as defined in the lemma statement (note $\ell_t(m_t^{\text{ic}})$ is deterministic given
2011 the losses).

2012 Combining (163) with (159) yields

$$2014 \quad \text{Reg}_{\text{alg} \rightarrow \text{ic}}(T) \leq \kappa_1 \text{Reg}_{\text{gate}}(T) + \text{Reg}_{\text{AC}}(T) + T \cdot \text{Approx}_V. \quad (164)$$

2016 J.5 Step 5: Combine the pieces

2017 Plugging (157) and (164) into (154) gives

$$2019 \quad \text{Reg}(T) \leq \kappa_1 \text{Reg}_{\text{gate}}(T) + \text{Reg}_{\text{AC}}(T) + \text{Reg}_{\text{switch}}(T) + T \cdot \text{Approx}_\pi + T \cdot \text{Approx}_V, \quad (165)$$

2021 which is exactly (32). \square

2024 K Proof of Theorem 5

2025 PROOF. We prove (34) by combining the three structural lemmas proved in the appendix: (i)
2026 the gate regret bound (Lemma 3), (ii) the critic/baseline tracking bound within a regime segment
2027 (Lemma 2), and (iii) the regret decomposition (Lemma 4). We also bound the switching transient
2028 term $\text{Reg}_{\text{switch}}(T)$ using the per-regime mixing property (Definition 2).

2030 K.1 Step 1: Decomposition

2031 By Lemma 4, under bounded costs and the calibration relation defining κ_1 ,

$$2033 \quad \text{Reg}(T) \leq \kappa_1 \text{Reg}_{\text{gate}}(T) + \text{Reg}_{\text{AC}}(T) + \text{Reg}_{\text{switch}}(T) + T \cdot \text{Approx}_\pi + T \cdot \text{Approx}_V. \quad (166)$$

2035 We now bound the three regret components $\text{Reg}_{\text{gate}}(T)$, $\text{Reg}_{\text{AC}}(T)$, and $\text{Reg}_{\text{switch}}(T)$.

2037 K.2 Step 2: Gate regret term

2038 In the full-information variant, the gate observes bounded losses $\ell_t(m) \in [0, C]$ for all m . Applying
2039 Lemma 3 yields

$$2041 \quad \text{Reg}_{\text{gate}}(T) = \sum_{t=1}^T \sum_{m=1}^M \tilde{g}_t(m) \ell_t(m) - \sum_{t=1}^T \ell_t(m_t^{\text{ic}}) \leq c_0 \left(C \sqrt{T \log M} + C S_T \log M \right), \quad (167)$$

2044 for some absolute constant $c_0 > 0$ (e.g., $c_0 = O(1)$ depending on the exact fixed-share/Hedge
2045 variant). Multiplying by κ_1 gives

$$2047 \quad \kappa_1 \text{Reg}_{\text{gate}}(T) \leq O \left(\kappa_1 C \sqrt{T \log M} + \kappa_1 C S_T \log M \right). \quad (168)$$

2049 K.3 Step 3: Switching transient term

2050 We upper bound the transient cost incurred immediately after each regime switch, before the state
2051 distribution re-mixes within the new regime and the critic/baseline re-centers.

2052 Fix a constant accuracy level $\epsilon \in (0, 1/4]$ and let $b \triangleq t_{\text{mix}}(\epsilon)$ be the corresponding uniform
2053 mixing time (from Definition 2 plus the definition of $t_{\text{mix}}(\epsilon)$). Partition time into the $S_T + 1$ segments
2054 $\{\mathcal{I}_k\}_{k=1}^{S_T+1}$ with switch times $\{\tau_k\}$. For each segment k , define its first b steps as the “burn-in” subset
2055 $\{\mathcal{I}_k\}_{k=1}^{S_T+1}$

$$2056 \quad \mathcal{I}_k^{\text{burn}} \triangleq \{\tau_{k-1}, \tau_{k-1} + 1, \dots, \min\{\tau_{k-1} + b - 1, \tau_k - 1\}\}. \quad (169)$$

2059 By bounded costs ($0 \leq c^{(z)} \leq c_{\max}$), the maximal per-step contribution to regret in these burn-in
 2060 steps is at most c_{\max} . Therefore, the total burn-in contribution across all segments is bounded by
 2061

$$2062 \text{Reg}_{\text{switch}}(T) \leq c_{\max} \sum_{k=1}^{S_T+1} |\mathcal{I}_k^{\text{burn}}| \leq c_{\max}(S_T + 1) b = O(c_{\max} S_T t_{\text{mix}}(\epsilon)), \quad (170)$$

$$2063$$

2064 where we used $b = t_{\text{mix}}(\epsilon)$ and absorbed the additive (+1) into the big- O . Taking ϵ as a fixed
 2065 constant (e.g., $\epsilon = 1/4$) yields the stated scaling
 2066

$$2067 \text{Reg}_{\text{switch}}(T) \leq O(c_{\max} S_T t_{\text{mix}}), \quad (171)$$

$$2068$$

2069 where t_{mix} is shorthand for $t_{\text{mix}}(1/4)$.

2070 K.4 Step 4: Within-expert learning term $\text{Reg}_{\text{AC}}(T)$

2071 By definition in Lemma 4, $\text{Reg}_{\text{AC}}(T)$ collects the loss due to imperfect advantage surrogates and
 2072 slow actor updates. We bound it by a standard “stochastic approximation under Markov noise”
 2073 argument, using Lemma 2 to control the bias of the TD residual $\delta_t^{(m)}$ (as an advantage surrogate)
 2074 within each stationary regime segment.

2075 Fix a segment \mathcal{I}_k with regime z_k , and consider the in-class comparator expert m_k^{ic} on this
 2076 segment. Let $m \triangleq m_k^{\text{ic}}$ for brevity. For the average-cost actor-critic update in Algorithm 1, the
 2077 actor update for expert m uses the score $\nabla_{\phi_m} \log \pi_{\phi_m}^{(m)}(a_t | s_t)$ multiplied by the TD residual $\delta_t^{(m)}$.
 2078 Under Assumption 1, we have a uniform score bound
 2079

$$2080 \|\nabla_{\phi_m} \log \pi_{\phi_m}^{(m)}(a | s)\| \leq G_{\pi}. \quad (172)$$

$$2081$$

2082 Moreover, under Assumption 2 and Lemma 2, after burn-in $b = \Theta(t_{\text{mix}})$ within the segment, the
 2083 critic/baseline tracking errors satisfy, for all $t \in \mathcal{I}_k$ with $t \geq \tau_{k-1} + b$,

$$2084 \mathbb{E} \left[|\bar{c}^{(m,t)} - J^{(z_k)}(\pi_{\phi_m^{(t)}}^{(m)})| \right] \leq \xi_{c,k}, \quad (173)$$

$$2085$$

$$2086 \mathbb{E} \left[\|w_m^{(t)} - w^{*,(z_k,m)}(\phi_m^{(t)})\| \right] \leq \xi_{w,k}, \quad (174)$$

$$2087$$

2088 where (matching Lemma 2) one can take

$$2089 \xi_{c,k} = O(\rho_{\max}) + O(\beta_{\max}) + O \left(\sup_{u \in \mathcal{I}_k} \frac{\alpha_u}{\beta_u} \right) + O(C_{\text{mix}} \rho^b), \quad (175)$$

$$2090$$

$$2091 \xi_{w,k} = O(\beta_{\max}) + O \left(\sup_{u \in \mathcal{I}_k} \frac{\alpha_u}{\beta_u} \right) + O(C_{\text{mix}} \rho^b). \quad (176)$$

$$2092$$

2093 These tracking errors imply that the TD residual $\delta_t^{(m)}$ is an approximately centered advantage
 2094 surrogate within the segment. Its conditional expectation differs from the ideal average-cost
 2095 advantage by at most a bias proportional to $\xi_{c,k} + \xi_{w,k}$. Because the actor update is scaled by step
 2096 size α_t , the cumulative performance loss contributed by this bias over the segment is bounded by
 2097

$$2098 \sum_{t \in \mathcal{I}_k: t \geq \tau_{k-1} + b} \alpha_t \mathbb{E} \left[|(\text{bias in } \delta_t^{(m)})| \cdot \|\nabla_{\phi_m} \log \pi_{\phi_m}^{(m)}(a_t | s_t)\| \right] \leq G_{\pi} (\xi_{c,k} + \xi_{w,k}) \sum_{t \in \mathcal{I}_k} \alpha_t. \quad (177)$$

$$2099$$

2100 In addition, the martingale (noise) part of the actor update contributes the usual $\sum_t \alpha_t^2$ term.
 2101 Concretely, because $|\delta_t^{(m)}| \leq O(c_{\max}) + O(\|w_m\|)$ and the score is bounded by G_{π} , one obtains
 2102

$$2103 \sum_{t \in \mathcal{I}_k} \alpha_t^2 \mathbb{E} \left[\|\delta_t^{(m)} \nabla_{\phi_m} \log \pi_{\phi_m}^{(m)}(a_t | s_t)\|^2 \right] \leq c_1 \sum_{t \in \mathcal{I}_k} \alpha_t^2 \quad (178)$$

$$2104$$

2105

2108 for some finite c_1 depending only on (c_{\max}, G_{π}) and the projection radius for (w_m) . Summing (177)
 2109 and (178) over all segments and using $\sum_k \sum_{t \in \mathcal{I}_k} \alpha_t = \sum_{t=1}^T \alpha_t$ and $\sum_k \sum_{t \in \mathcal{I}_k} \alpha_t^2 = \sum_{t=1}^T \alpha_t^2$ yields
 2110

$$2111 \quad \text{Reg}_{\text{AC}}(T) \leq c_2 \sum_{t=1}^T \alpha_t + c_3 \sum_{t=1}^T \alpha_t^2 + c_4 \sum_{k=1}^{S_T+1} (\xi_{c,k} + \xi_{w,k}) \sum_{t \in \mathcal{I}_k} \alpha_t, \quad (179)$$

2114 for constants c_2, c_3, c_4 depending only on boundedness parameters.

2115 Finally, choose standard diminishing step sizes $\alpha_t = \alpha/\sqrt{t}$:

$$2116 \quad \sum_{t=1}^T \alpha_t = O(\sqrt{T}) \text{ and } \sum_{t=1}^T \alpha_t^2 = O(\log T), \quad (180)$$

2119 and under two-timescale separation ($\sup_{u \in \mathcal{I}_k} \alpha_u/\beta_u \rightarrow 0$ and $\beta_{\max}, \rho_{\max} \rightarrow 0$), the tracking-error
 2120 factors $\xi_{c,k}, \xi_{w,k}$ are $o(1)$ (or can be treated as constants absorbed into $\tilde{O}(\cdot)$ at finite T). Therefore,
 2121 (179) gives the claimed sublinear rate
 2122

$$2123 \quad \text{Reg}_{\text{AC}}(T) \leq \tilde{O}(\sqrt{T}), \quad (181)$$

2125 where $\tilde{O}(\cdot)$ hides logarithmic factors (from $\sum_t \alpha_t^2$) and the constant tracking-error terms from Lemma 2.
 2126 This matches the $\tilde{O}(\sqrt{T})$ term in (34).

2128 K.5 Step 5: Combine all bounds

2129 Substitute (168), (171), and (181) into (166):

$$2131 \quad \text{Reg}(T) \leq O\left(\kappa_1 C \sqrt{T \log M} + \kappa_1 C S_T \log M\right) + \tilde{O}(\sqrt{T}) + O(c_{\max} S_T t_{\text{mix}}) + T(\text{Approx}_{\pi} + \text{Approx}_V), \quad (182)$$

2134 which is exactly (34).

2136 K.6 Vanishing average regret

2137 Divide both sides by T . If $S_T = o(T)$ and $\text{Approx}_{\pi} + \text{Approx}_V = o(1)$, then each term on the right
 2138 divided by T converges to 0:

$$2140 \quad \frac{\sqrt{T \log M}}{T} \rightarrow 0, \quad \frac{S_T \log M}{T} \rightarrow 0, \quad \frac{\tilde{O}(\sqrt{T})}{T} \rightarrow 0, \quad \frac{S_T t_{\text{mix}}}{T} \rightarrow 0, \quad (183)$$

2142 hence $\text{Reg}(T)/T \rightarrow 0$. This completes the proof. □

2145 L Proof of Theorem 6

2146 PROOF. We use a standard Foster-Lyapunov drift argument.

2148 L.1 Step 1: Drift inequality ensured by the safety projection

2150 By construction of the safety projection in Algorithm 1, the post-projection sampling distribution
 2151 satisfies

$$2152 \quad \tilde{g}_t(m_{\text{safe}}) \geq p_{\min} > 0, \text{ for all } t. \quad (184)$$

2154 For the queueing instantiations (and more generally, whenever a stabilizing baseline policy exists),
 2155 we assume the following baseline drift property: there exist constants $B < \infty$ and $\epsilon > 0$ such that, if
 2156

2157 the stabilizing expert m_{safe} is selected with probability at least p_{\min} at every time, then the induced
 2158 queueing process satisfies the one-step conditional Lyapunov drift bound

$$2159 \quad \mathbb{E} [L(Q_{t+1}) - L(Q_t) \mid Q_t] \leq B - \epsilon \|Q_t\|_1, \text{ for all } t, \quad (185)$$

2160 with $L(Q) \triangleq \frac{1}{2} \|Q\|_2^2$. Thus, under the stated condition $\tilde{g}_t(m_{\text{safe}}) \geq p_{\min}$, inequality (185) holds.

2162 **L.2 Step 2: Unconditional drift and telescoping**

2163 Taking total expectation of (185) and using the tower property yields, for every t ,

$$2165 \quad \mathbb{E} [L(Q_{t+1})] - \mathbb{E} [L(Q_t)] = \mathbb{E} [\mathbb{E} [L(Q_{t+1}) - L(Q_t) \mid Q_t]] \quad (186)$$

$$2166 \quad \leq B - \epsilon \mathbb{E} [\|Q_t\|_1].$$

2167 Summing (186) over $t = 1, 2, \dots, T$ gives a telescoping sum:

$$2169 \quad \mathbb{E} [L(Q_{T+1})] - \mathbb{E} [L(Q_1)] \leq BT - \epsilon \sum_{t=1}^T \mathbb{E} [\|Q_t\|_1]. \quad (187)$$

2172 Since $L(\cdot) \geq 0$, we have $\mathbb{E}[L(Q_{T+1})] \geq 0$, and therefore

$$2173 \quad \epsilon \sum_{t=1}^T \mathbb{E} [\|Q_t\|_1] \leq BT + \mathbb{E} [L(Q_1)]. \quad (188)$$

2176 Divide both sides by $T\epsilon$:

$$2178 \quad \frac{1}{T} \sum_{t=1}^T \mathbb{E} [\|Q_t\|_1] \leq \frac{B}{\epsilon} + \frac{\mathbb{E} [L(Q_1)]}{\epsilon T}. \quad (189)$$

2180 Taking $\limsup_{T \rightarrow \infty}$ on both sides and using $\frac{\mathbb{E} [L(Q_1)]}{\epsilon T} \rightarrow 0$ yields

$$2182 \quad \limsup_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T \mathbb{E} [\|Q_t\|_1] \leq \frac{B}{\epsilon}. \quad (190)$$

2185 This is exactly the desired bound.

2186 **L.3 Step 3: Strong stability**

2188 Under the standard definition of strong stability (finite time-average expected backlog),

$$2189 \quad \limsup_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T \mathbb{E} [\|Q_t\|_1] < \infty, \quad (191)$$

2192 the bound above implies that the queue component $\{Q_t\}$ is strongly stable.

2193 This completes the proof. □

2196 Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009