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Mixture-of-Experts Actor-Critic for Regime-Switching MDPs:
Impossibility Results and Performance Guarantees

MING SHI, University at Buffalo (SUNY), USA

Performance-critical computer and communication systems routinely traverse heterogeneous operating
regimes, including light/heavy traffic, congestion episodes, workload phase shifts, mobility-induced channel
changes, and benign/adversarial operation. This regime heterogeneity induces structured nonstationarity:
the Markov decision process (MDP) governing the system can switch in its transition dynamics and/or cost
structure. We show that this phenomenon is not merely a modeling nuisance, but a structural obstacle for
monolithic stationary actor-critic methods when objectives couple efficiency with systems metrics such as
stability, delay, and resource costs. We formulate regime-switching MDPs (RS-MDPs) with an unobserved,
piecewise-constant regime process and evaluate performance against a regime-aware benchmark that applies
the per-regime optimal stationary policy. We then propose a regime-aware mixture-of-experts actor-critic (RA-
MOoE-AC) algorithm that combines expert policies, an online gating mechanism for regime-adaptive selection,
and a lightweight safety projection that enforces minimum use of a stabilizing expert. Our contributions are
twofold. First, we prove impossibility theorems showing that any stationary policy can suffer a non-vanishing
optimality gap against the regime-aware benchmark, and that regime mismatch can destroy queue stability
even when each regime is individually stabilizable. Second, for RA-MoE-AC we derive switching-aware
performance bounds whose leading terms scale as O(~/T log M + St log M + Sttniy), plus approximation terms
that decrease as the expert class is enriched (with larger M), and establish strong stability in queueing. Here,
T is the horizon, St the number of regime switches, and fp,;y the per-regime mixing time.
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1 Introduction

Modern networked systems, e.g., wireless access networks, edge/cloud platforms, and cyber-physical
infrastructures, are usually nonstationary [12, 14, 27, 37]. They operate under shifting traffic
intensities, changing connectivity and interference, evolving workload mixes, time-varying resource
prices, and occasional failures or adversarial disruptions. These effects are often structured. For
certain periods, the system behaves according to a relatively stable operating regime, and then
switches to a different mode in which the dominant bottlenecks, dynamics, and costs change.

We study the fundamental algorithmic and theoretical consequences of such regime switching
through a latent mode variable z; that selects among a finite set of stationary/static Markov decision
processes (MDPs). This abstraction captures canonical phenomena in systems, e.g.,

o Queueing and scheduling. In wireless scheduling, routing, and cross-layer control, policies that
are efficient in light traffic can be persistently misaligned in heavy traffic, where stability margins
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2 Ming Shi

and backlog growth dominate [17, 25, 30, 38]. Mobility and interference can also fundamentally
shift the effective service process, changing which users are bottlenecks.

e Edge/cloud and data centers. Workload phases (e.g., diurnal patterns, flash crowds, and workload-
mix shifts) can abruptly change resource bottlenecks, (e.g., CPU, network, and memory) and the
right provisioning logic [7, 18].

o Cyber-physical and security-aware systems. Systems may switch between benign operation,
partial failures, and adversarial disturbance modes, changing both transition laws and costs (e.g.,
penalties for risk exposure or safety violations) [9, 27].

A central implication is immediate: when z, changes, the best control policy can change with it.
Our goal is close to a best-of-many-worlds guarantee where the active “world” (regime) itself can
change over time, rather than the classic best-of-both-worlds paradigm [32, 43].

1.1 Why Regime Switching Breaks the Stationary Actor-Critic Method

Actor-critic methods are attractive in large-scale systems because they are online, scalable, and
compatible with function approximation [8, 22, 23, 39]. However, standard analyses typically assume
a single stationary MDP. Under regime switching, three core objects move simultaneously: (i) the
transition kernel (hence the stationary occupancy measure), (ii) the cost landscape, and (iii) the
critic fixed point. As a result, the critic becomes a moving target, advantage surrogates become
biased after switches, and actor updates can chase transient artifacts.

A tempting counter-argument is that a sufficiently expressive parameterization (e.g., using deep
learning and/or neural networks [6, 42]) should learn a single policy that “works everywhere” Our
results show that this intuition is not just practically fragile but can be theoretically false. Even in
benign dynamics, a single stationary policy may incur a non-vanishing performance gap relative
to a regime-aware benchmark. Worse, in queueing systems, sustained regime mismatch creates a
persistent service deficit, which leads to linear backlog growth and loss of stability.

To characterize systems-level behavior, e.g., post-switch transients, stability regions, and back-
log/delay scaling, we adopt a regime-aware and stability-centric evaluation lens. On the efficiency
side, we compete with a regime-aware benchmark that applies the per-regime optimal stationary
policy on each segment, and we ask how the excess cost scales with the number of switches and the
per-regime mixing time. On the safety side, for queueing instantiations we require strong stability,
and we explicitly enforce a Lyapunov-drift safeguard rather than relying on stability as an emergent
byproduct of learning. This emphasis is also dictated by our lower bounds in Section 4. That is,
without an explicit regime-adaptive mechanism, both tracking efficiency and stability can fail.

1.2 Regime-Switching Markov Decision Processes

We model the system as a regime-switching MDP with a finite family of stationary MDPs {M*} . .
A latent piecewise-constant process {z;} selects the active regime at time . The agent does not
observe z; and the switching times. Our primary performance metric is tracking regret against the
regime-aware benchmark that applies the per-regime optimal stationary policy on each segment.

There are several new challenges under regime switching. First, regime heterogeneity can
create structural (policy-class) mismatch. Different regimes may induce conflicting optima, e.g., the
optimal action flips on a frequently visited state, so any single stationary policy must compromise
and can be persistently suboptimal. Second, the regime is latent, so fast post-switch inference is
unavoidable. The agent must identify the active mode from the feedback and reallocate control
quickly after switches. Third, critic learning becomes nonstationary. The relevant average-cost
Bellman/Poisson fixed point (and hence advantage surrogates) changes across regimes, so critics
must track segment-wise targets. Otherwise, temporal-difference (TD) bias propagates into the
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Mixture-of-Experts Actor-Critic for Regime-Switching MDPs 3

actor updates. Fourth, in queueing systems, inference and exploration errors are state-amplifying.
Sustained mis-selection yields a positive service deficit (negative drift fails), which causes backlog
to grow even when each regime is individually stabilizable. Together, these challenges motivate
a agent that represents multiple regime-specialized behaviors, performs online mode selection,
controls post-switch transients via timescale separation, and enforces a stability floor in queueing.

1.3 Main Contributions and Results

The main contributions and results in this paper are summarized as follows.

o Impossibility results (Section 4). We establish two complementary lower bounds that formalize
when regime adaptivity is structurally necessary. First, we construct an RS-MDP with regime-
independent dynamics and conflicting per-regime optimal actions, for which every stationary
policy incurs linear tracking regret Reg(T) = Q(T) against the regime-aware benchmark, and
this persists even under slow regime-switching with an arbitrary minimum segment length Ly,
(Section 4.1). Second, we show that in queueing systems regime mismatch can destroy stability:
no fixed randomized priority rule stabilizes two regimes that swap the bottleneck queue, and
within a long “bad” segment the backlog grows at least linearly in Ly;, (Section 4.2). Together,
these results explain why regime adaptivity is required for both efficiency and safety.

o Algorithm: RA-MoE-AC (see discussion above and Section 5). Our new algorithm, Regime-
Aware Mixture-of-Experts Actor-Critic (RA-MoE-AC), is designed around four coupled mechanisms
(see Algorithm 1). First, we adopt an MoE policy class with M expert actors so that different
experts can represent regime-specialized behaviors. This avoids the single-policy limitation
highlighted by Impossibility I and reduces the challenge to online mode selection. Second, we
train a state-dependent gate using a TD-residual-based mismatch signal. Within a fixed regime,
an expert whose critic is approximately Bellman-consistent exhibits small centered TD residuals,
whereas after a regime switch the previously well-matched expert typically produces systematic
residual spikes. The gate interprets the resulting bounded residual losses as online feedback and
reallocates probability mass after switches. Third, we maintain per-expert critics and enforce
timescale separation (critic fastest, gate intermediate, actor slow), so that value surrogates track
segment-wise fixed points after a short burn-in while limiting the propagation of transient critic
bias into actor updates. Finally, because Impossibility II shows that inference errors can be unsafe
in queueing systems, we enforce an explicit stability floor via a safety projection that guarantees
a minimum selection probability py,, for a stabilizing baseline policy embedded as a dedicated
expert. This converts stability from an emergent property into an enforced constraint and enables
tracking-performance analysis within a guaranteed safe envelope.

o Achievable performance guarantees (Section 6). Our analysis chain starts from per-regime
geometric mixing, then establishes critic/baseline tracking and switching-aware gate regret, and
culminates in the main tracking theorem, yielding an explicit decomposition of the tracking regret.
In particular, the bound separates as follows: (i) expert-selection overhead O(+/T log M+St log M),
(if) within-segment actor-critic learning terms (sublinear in T under timescale separation), (iii)
post-switch transients O(Sttmix), and (iv) irreducible approximation errors Approx, + Approxy.
Here T is the horizon, M the number of experts, St the number of regime switches, tpix the
per-regime mixing time, and Approx,, / Approx,, denote policy/value approximation errors.
Consequently, if S = o(T) and approximation errors vanish, then Reg(T)/T — 0.

o Stability/backlog guarantees via safety projection (Theorem 6). Under a standard baseline
Lyapunov drift condition for the stabilizing expert, the safety projection yields strong stability and
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4 Ming Shi

an explicit backlog bound, i.e., lim sup;_, % ST E||Q:|l; < B/e. This modular result provides
a regime-agnostic stability envelope within which the tracking guarantees operate.

2 Related work

We review adjacent lines of work and clarify what remains unaddressed in our setting.

Learning for networks and systems. Large-scale resource-management problems in networking
and computing are routinely implemented atop cluster and control substrates such as Mesos and
Borg [19, 41], which has motivated a wave of learning-based controllers that optimize end-to-end
performance objectives directly from operational traces (e.g., deep reinforcement learning (RL) for
cluster management and adaptive bitrate (ABR) control [28, 29]). Their evaluations are typically
trace-driven and their analyses rarely provide stability-centric, switching-aware, and robustness
guarantees against regime mismatch. In parallel, rigorous robustness and optimization guarantees
have been developed, e.g., via Lyapunov/drift or performance guarantees under uncertainty, for
related operational settings (e.g., data-center demand response and workload shifting) [11, 26]. Our
work is closest in spirit to this latter lens, but targets the regime-switching RL setting.

Regret-optimal RL in stationary MDPs. A large theory literature studies regret/sample-complexity
guarantees for stationary MDPs, mainly in episodic or communicating settings [2, 3, 22, 36]. These
results are foundational, but do not directly model piecewise-stationary regime switching, latent
regime inference, or stability constraints that amplify transient errors.

Nonstationary and adversarial bandits/MDPs. Nonstationarity has been studied under variation
budgets, change-point models, and piecewise-stationary assumptions, predominantly in bandits
and partially in MDPs [5, 10, 16, 35]. These formulations often compete with a best-in-hindsight
stationary comparator or assume smoothly varying dynamics. In contrast, our benchmark is
explicitly regime-aware (piecewise stationary), and the analysis must couple learning performance
to stability metrics (backlog growth and strong stability), which leads to qualitatively different
failure modes (Impossibility IT) and motivates explicit stability safeguards.

Latent-regime models and latent-state RL. Regime-switching can be viewed as a latent-variable
control problem. Related works include hidden-parameter or latent-task MDPs, where a latent
variable indexes system modes and the learner must adapt online [13, 24]. This literature typi-
cally emphasizes transfer efficiency, whereas our focus is on switching-aware tracking against a
regime-aware stationary benchmark together with stability guarantees. Our MoE gate provides
a lightweight online mechanism for latent-mode selection that is directly tied to performance
certificates (TD-residual-based losses) and to stability enforcement (safe-expert floor).

Quick change detection (QCD) and “detect-then-control.” A classical approach to nonstationarity is
to detect distributional changes and then restart or switch agents. Quickest change detection offers
principled detectors such as CUSUM and Shiryaev-type procedures [4, 33, 40]. These tools provide
strong detection-delay/false-alarm tradeoffs, but do not by themselves resolve how to maintain
stability during detection uncertainty, or how to integrate detection signals with continuous control
updates. Our gating mechanism can be interpreted as an online, control-coupled “soft” alternative,
where TD residuals act as mismatch signals that continuously reweight experts, and the safety
projection ensures stability even when the mismatch signal is noisy.

Robustness and competitiveness with imperfect predictions. A parallel systems tradition studies
robustness via competitive analysis and robustness-consistency tradeoffs when algorithms leverage
imperfect forecasts of demand, prices, or workloads [11, 26]. These frameworks typically benchmark
against an offline clairvoyant optimum via competitive ratio and aim for graceful degradation as
prediction quality deteriorates. Our regime-switching setting differs in two fundamental respects.
First, uncertainty is a latent operating mode that changes the identity of the optimal policy, rather
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Mixture-of-Experts Actor-Critic for Regime-Switching MDPs 5

than a forecast of future inputs. Second, the dominant constraint is stability, where mis-control
induces state-amplifying backlog growth and cannot be smoothed by time-averaging.

Mixture-of-experts and modular policies. MoE architectures are a standard mechanism for repre-
senting heterogeneous behaviors and enabling conditional computation [15, 21, 34]. Relatedly, mod-
ular and compositional policies have shown strong empirical effectiveness in RL [1, 20]. However,
existing theory does not target tracking a regime-aware stationary benchmark under piecewise-
constant switching, while simultaneously enforcing queue stability guarantees. In our work, MoE is
a structural requirement dictated by our impossibility results, i.e., when regimes induce conflicting
optima on frequently visited states, any single stationary policy suffers a non-vanishing gap.

Queueing control, stability, and drift-based optimization. MaxWeight and related Lyapunov-drift
policies are stability-optimal for broad classes of queueing networks under stationary primitives [17,
38]. The drift-plus-penalty framework further unifies stability and long-run cost optimization under
stationary randomness [31], and cross-layer control connects these ideas to wireless systems [17].
Our setting departs from this classical regime, since arrivals/service statistics and/or cost tradeoffs
switch across latent operating regimes.

3 Problem Formulation

This section formalizes the regime-switching Markov decision process (RS-MDP) studied in this
paper. Concretely, the system evolves according to one of Z regimes (operating modes), where
each regime z € {1,...,Z} is associated with its own stationary MDP M@ This regime ab-
straction captures common systems phenomena, e.g., workload phase changes in data centers,
mobility/interference shifts in wireless networks, and time-varying resource prices or policy con-
straints in provisioning. It is also sufficiently structured to enable switching-aware performance
guarantees, and stability guarantees for our queueing instantiations. For the convenience of the
reader, Table 2 at the beginning of the appendix summarizes the key notation.

3.1 Regime-Switching MDP (RS-MDP)

We consider an agent interacting with a system over discrete time slots t = 1,2,...,T. At each
time ¢, the system is governed by a latent regime z;, which is not revealed to the agent. The agent
observes the current state s;, selects an action a;, then incurs an instantaneous cost and the system
transitions to a next state s;.1. Specifically,

e s; € S denotes the system state (e.g., queue lengths, channel state, server state, workload type);

e a; € A denotes the agent’s action (e.g., which queue/user to serve, how much resource to
allocate);

e z; € Z={1,2,...,Z} denotes the latent operating mode (regime) of the environment.

The agent does not observe z; or the switching times of the regime process {z;}. Instead, it only
observes the realized state-action trajectory (and the instantaneous cost defined below). This
modeling choice reflects many systems in which the root cause of a mode change (e.g., interference
pattern, workload phase, or adversarial activity) is not explicitly revealed at decision time, which
motivates regime-adaptive policies utilizing mixture-of-experts with online gating.

Per-regime stationary MDP. For each regime z € Z, we define a stationary MDP M) 2
(S, A, PP 2)) where:

e P : 8 x A — A(S) is the transition kernel under regime z, where A(S) denotes the set of
probability distributions over S. In particular, P\) (- | s, a) specifies the distribution of the next
state given a state-action pair (s, a).
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6 Ming Shi

e @ 8SxA > [0, cmax]| is the instantaneous cost under regime z, i.e., the cost incurred by
taking action a in state s, where ¢pax > 0 is a known uniform upper bound (w.l.o.g., bounded
costs can be rescaled to [0, 1]).

Intuitively, M(?) describes how the system behaves if it were to remain in regime z over a time
window. At time ¢, conditioned on z; = z, the agent incurs cost ¢; = ¢® (s;,a;), and the next
state is drawn as s;4; ~ P (- | s¢,a;). Thus, the nonstationarity in our model arises from the
switching of the latent regime process {z;}, which selects which stationary MDP M%) governs
the system at each time. The regime variable z; can affect the system in two systems-relevant
ways: (i) switching dynamics, where transition kernel P(*) changes across regimes (e.g., different
channel/workload/failure statistics); and/or (ii) switching objectives, where instantaneous cost
¢?) changes across regimes (e.g., energy price/carbon intensity or service-level agreement (SLA)
weights).

Regime switching model. We model {z,} as piecewise constant with finitely many switches up to
horizon T. Specifically, there exist switch times1 =7y < 73 < -+ < 75, < T and we set 7,41 = T+1,
such that z; is constant on each segment 7 = {r_1,...,7x — 1}, k =1,...,S7 + 1. We denote by

.....

3.2 Performance Metric

This subsection defines the performance metric. We first define finite-horizon (time-T) costs for any
policy, and then define infinite-horizon (steady-state) average costs under a fixed regime, which
serve to define the per-regime optimal stationary benchmark.

Finite-horizon cumulative cost and average cost. Given a (possibly history-dependent) policy 7
over horizon T (denoted 7w = my.7), let {(s], a )}tT=1 denote the state-action trajectory generated by
7« interacting with the regime-switching environment. Define the finite-horizon cumulative cost

Crim) 2 Be | ), e (57.a) 0

and the corresponding finite-horizon average cost Vr () = %CT(ﬂ). The expectation E,[-] is taken
with respect to the randomness of the regime sequence {z;}, the controlled state transitions under
{P#)}, and the policy’s (possibly randomized) action selection.

Infinite-horizon average cost under a fixed regime. For any stationary randomized policy 7 € Il
and fixed regime z € Z, define its steady-state infinite-horizon average cost

N
. 1 z
J@ (7) £ lim SUPN 00 Ep) 5 [Z @ (ssar)], (2)

N t=1

where the regime is held fixed at z for all time (and the expectation is with respect to the trajectory
induced by 7 under P(*)). The lim sup is used for generality, since the limit need not exist without
additional ergodicity or unichain assumptions. Then, for each regime z € Z, define a per-regime
optimal stationary policy (breaking ties arbitrarily) by

) e arg mingep,,,, ](Z)(ﬂ'). (3)

Regime-aware tracking regret. Since the environment can switch regimes over time, a natural com-
parator is the regime-aware (nonstationary) benchmark policy 7z; (- | s) = %) (-] 5), which ap-
plies the regime-optimal stationary policy for the currently active regime. Let {(s7 , af*)}tT=1 be the

trajectory induced by {7} }. Define the benchmark cumulative cost C; = B, X/, ¢ (s, a7 )],
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and the cumulative tracking regret
Reg(T) £ Cr(x) — Cx. (4)

We also report the average (per-step) regret Reg(T) /T, which is directly comparable to the finite-
horizon average cost V(). The metric (4) evaluates how well an online agent tracks the best
stationary behavior for each regime and is the standard benchmark for obtaining switching-aware
bounds that scale with the number of regime changes.

3.3 Policy Class: Mixture-of-Experts Actor-Critic

We now specify the parametric policy class considered in this paper. The key idea is to represent
regime-dependent behavior via a mixture-of-experts (MoE), i.e., different experts specialize to
different operating modes, while a gating network adaptively selects experts online based on the
observed state.

Actor and mixture policy. We consider a mixture policy with M experts. Let n;m) (- | s) be the

m-th expert policy parameterized by ¢,, and denote ¢ = (¢, ..., Par). Then, the actor with mixture
policy is

rogals) £ > go(m|s)mi™ (als). %)

where go(- | s) € A is a gating distribution over experts, parameterized by 6. A standard choice is a
exp(uy™ (s))
M exp(u’ (s))
network). Our analysis assumes the score functions are regular enough so that Vgloggg(m | s) is
uniformly bounded. Although 7y ¢ is stationary as a mapping from s to a distribution over actions,
it can effectively adapt to regime changes through state-dependent gating and expert specialization.

softmax gate gg(m | s) = , where uém) (s) is a score function (e.g., linear or a shallow

Critic and value function approximation. We maintain per-expert critics {Vv(‘:) WM_ . which esti-

mate the (differential) value of states under expert m. For theoretical analysis, we focus on linear
critics:

Ve (s) = Y(s) Wi, (6)

where ¢ : S — R? is a bounded feature map with |[i/(s)|| < 1, and w,, € R? is the critic parameter
for expert m.

Average-cost TD error and advantage estimate. Our performance metric is average cost (Section 3.2).
Accordingly, we use the standard average-cost (relative-value) actor-critic surrogate based on a
centered TD error. For each expert m, we maintain an estimate 7™ of the average cost under that
expert, and define the per-expert TD error

5" £ e =™ + VU (i) = Vi (s0). 7)
We use A\ﬁm) as an advantage estimate and a common single-step choice is Xgm) ~ 5;'").

3.4 System Instantiations

This subsection provides two instantiations of our problem setting.

3.4.1 Instantiation A: Single-Queue System with Regime-Dependent Arrivals and Energy Prices. We
instantiate the RS-MDP with a canonical single-server queueing system whose operating conditions
(workload intensity and energy price) vary across regimes. The system state is s; = (Qy, x;), where
Q: € R, is the queue backlog and x; € X is an exogenous mode variable (e.g., workload phase,
channel condition, or server state).
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Specifically, at each slot ¢, the agent chooses a service action a; € A C [0, fmax]. Conditioned on
the latent regime z; = z, arrivals A;Z) are drawn and the queue evolves as

— (2:) _ *
Ore1 = |Or + A a| . ®)

We model the exogenous process as regime-dependent Markov dynamics x,1; ~ %) (- | x;), and
arrivals as a regime- and state-dependent distribution,

A~ DEO( | x0) ©

e.g., Poisson arrivals with mean A1(¥) (x;). This captures workload phase shifts where both the
transition law of x; and the arrival intensity depend on the current regime. We consider a per-slot
cost that penalizes backlog (delay proxy) and energy expenditure with a regime-dependent price:

c(z)(Q, x,a) =wQ + s (10)

where w > 0 weights delay/backlog and k¥) > 0 is a regime-dependent energy/price coefficient
(e.g., reflecting electricity price or carbon intensity). This model captures the canonical tradeoff: in
high-price regimes, aggressive service is costly, whereas in low-price regimes, aggressive service
is attractive for backlog reduction. Let s = (Q,x) and s’ = (Q’, x”). Using (8)-(9), the regime-z
transition kernel admits the factorization

PO [s,a)=) DA FOW [ 1{Q =[Q+A-al'}. ()

In this instantiation, regimes can alter (i) the arrival law DA (- | x), ie., traffic intensity, (ii)
the evolution of the exogenous mode #?) (- | x) i.e., phase persistence, and (iii) the energy/price
coefficient k() in (10).

3.4.2 Instantiation B: Downlink Wireless Scheduling with Regime-Dependent Channel Law. We next
instantiate the RS-MDP with a canonical downlink scheduling problem in a wireless base station
serving d users. The system maintains per-user queues Q;; € Ry for i € [d], and the wireless
channel state at time ¢ is denoted by H; € H (capturing fading and interference).

Specifically, the system state is s; = (Qy, H;), where Q; = (Qt1, ..., Qr4). The latent regime
z; € Z captures operating conditions such as mobility/interference patterns. Conditioned on z; = z,
we model the channel as a regime-dependent Markov process Hyy; ~ H?) (- | H;), where H?
can specialize to the i.i.d. case by dropping the conditioning. At each time, the scheduler selects one
user a; € A = {1,2,...,d} to serve. (Extensions to selecting rate vectors or multiple users per slot

are standard and omitted for clarity.) User i receives exogenous arrivals A;Zi’), potentially regime-

dependent (e.g., demand phases), A;j) ~ Di(z) (- | Hy). If user i is scheduled, it receives service at an
achievable rate r;(Hy; z;), which can also depend on the regime (e.g., reflecting interference levels
or mobility). The per-user queue update is

+
Qrei = [Qt,i +A§,Zl-[) - Ha; =i} ri(Hpz)| i€ [d]. (12)

We consider a standard delay-power objective ¢?)(Q, H, a) = Z}j:l w;Q; + A?) Power(a, H), where
w; > 0 are queue weights, Power(a, H) is the transmit power incurred by serving user a under
channel state H (e.g., due to adaptive modulation/coding or target rate constraints), and A*) > 0 is
a regime-dependent price coefficient that can encode time-varying energy prices or tighter power
constraints in certain operating modes.

In this instantiation, regimes can correspond to (i) mobility/interference patterns that change
the channel law 7 (?) and the achievable rate functions r;(+; z), and/or (ii) traffic demand phases
that change the arrival laws {Z)l.(z) } and the power price 1?). Because both channel statistics and
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traffic intensities can shift across regimes, the scheduling policy that is optimal in one regime can
be persistently misaligned in another.

Definition 1 (Strong stability [31]). The queue process {Q;} is strongly stable if

. 1 T
limsupy o = >, ELIQ:11] < oo. (13)

4 Impossibility Results: Regret Lower Bounds and Queue Instability

This section explains why regime switching fundamentally changes what can be achieved by
stationary control rules. Even when each regime is individually stationary and admits a well-
behaved optimal stationary policy, a single stationary policy can be persistently misaligned with
at least one regime. The consequence is twofold: (i) a stationary policy can incur a non-vanishing
average-cost gap relative to a regime-aware benchmark, and (ii) in queueing instantiations, regime
mismatch can create sustained overload within long segments, leading to instability.

4.1 Impossibility I: A Stationary Policy Can Have a Non-Vanishing Cost Gap

We construct a simple RS-MDP where two regimes require opposite actions on a frequently vis-
ited state. Let S = {s¢,s1} and A = {a*,a”}. The state evolution is deterministic and regime-
independent:

St41 = 81 i s; = so; and s;4q = sp if 54 = s7.

Hence s is visited exactly every other step, independent of the policy. The two regimes differ only
in the cost at state s:

e Regime 1: ¢V (sp,a*) =0, ¢V (s9,a”) = 1, and ¢V (51, a) = 0 for both actions.
e Regime 2: ¢® (sg,a7) =0, ¢® (sp,a*) = 1, and ¢ (51, @) = 0 for both actions.

Therefore, the optimal regime-aware benchmark policy 7z} will simply choose a* at sy in regime 1
and a~ at sy in regime 2, and achieve zero cost at all times.

Theorem 1 (Linear regret for stationary policies under conflicting regimes). For the above two-
regime construction, for any stationary randomized policy m, there exists a piecewise-constant regime
sequence {z;} such that

. (14)

Reg(T) > {gJ - max {7r(a+ | so), m(a™ | so)} > %

and hence Reg(T) = Q(T) andReg(T)/T = Q(1).

Theorem 1 isolates a fundamental obstruction: when two regimes require conflicting actions
on a state that is visited with nontrivial frequency, any single stationary policy must randomize
and therefore be persistently suboptimal for at least one regime. Notably, this lower bound holds
even though the dynamics are completely benign (deterministic and regime-independent), so the
failure is not caused by slow mixing or hard exploration. Instead, it is caused by latent regime
dependence of the optimal action. Consequently, achieving sublinear tracking regret in RS-MDPs
requires a mechanism that can represent and select among multiple specialized behaviors (e.g.,
via mixtures) and an online adaptation/inference component (e.g., gating) that identifies which
behavior is appropriate from the observation. We provide the proof sketch for Theorem 1 below,
and please see Appendix C for the complete proof.
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10 Ming Shi

Proof sketch. Let p = m(a* | sp) € [0,1] for the stationary randomized policy 7. Since the
transition is deterministic and alternates between sy and s; regardless of the action, the state s, is
visited exactly | T/2] times over horizon T. In regime 1, the expected cost incurred at each visit to
so equals 1 — p (because only action a~ is costly), while in regime 2 it equals p (because only action
a* is costly). Costs at s; are always 0. Hence, if the entire horizon is spent in regime z € {1, 2}, the
expected cumulative cost of 7 is

= [Z; e s at)] = EJ x[(1-p)l{z=1}+pl{z=2}].

The regime-aware benchmark 77 chooses the zero-cost action at sy for the active regime, so it

achieves zero cumulative cost under either regime. Therefore, for the regime z that is worse for =
(z=1if1 - p > p and z = 2 otherwise),

T T T

Reg(T) =E [thl ¢® (s, at)] > {EJ -max{p,1 —p} > 1

which implies Reg(T) = Q(T) and Reg(T)/T = Q(1). O

The lower bound of regret in Theorem 1 is not an artifact of rapid switching. In fact, linear regret

persists even when regimes are required to be piecewise constant with a prescribed minimum
segment length L.

- %3 (15)

Theorem 2 (Linear regret under slow switching (minimum segment length)). Fix any stationary
randomized policy m and any Lyin > 1. For any horizon T > Ly, there exists a piecewise-constant
regime sequence {z;}1_, satisfying the segment-length constraint Ly, such that Reg(T) = Q(T). In
particular, one may choose either:

(1) No switching: St = 0 (a single regime for all t), in which case Ly, =T andReg(T) > T/4—-1/2;

or
(2) With switching: an alternating regime sequence with segment length exactly Lp,, which yields
1
Reg(T) = (Z ~ 3 )T, forall T that are multiples of 2Luin. (16)

The construction in the proof highlights a key insight that regime switching creates competing
optima. Even if the transition dynamics are benign and perfectly predictable, the optimal action
can depend on an unobserved regime. Thus, achieving sublinear tracking regret requires either (i)
explicit regime inference, or (ii) a policy class capable of representing multi-modal behavior (e.g.,
mixtures) together with an online selection mechanism. We provide the proof sketch for Theorem 2
below, and please see Appendix D for the complete proof.

Proof sketch. For (i), select the regime (1 or 2) that maximizes the stationary policy’s per-step
loss (as in Theorem 1). This produces Reg(T) > T/4 and trivially satisfies any minimum-segment
constraint since there is only one segment.

For (ii), partition time into segments of length Ly, and alternate regimes 1, 2, 1, 2, . ... Within any
segment, the state s, is visited at least | L,y /2] times (because the chain alternates deterministically),
and each visit to sq incurs expected cost 1 — p in regime 1 and p in regime 2, where p = w(a* | o).
If there are K = T /Lnin segments with K even, then exactly K/2 segments are in each regime, and
the total expected cost is at least

Iﬁ Lmin (1_ )+E Lmin _E Lmin > 1_ 1 T
2| 2 pzzp_22‘42Lmin

The regime-aware benchmark achieves zero cost, hence (16) follows. o
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4.2 Impossibility II: Regime Mismatch Can Destroy Queue Stability

We now show that, in queueing systems, regime mismatch can have a qualitatively stronger effect
than a constant cost suboptimality, i.e., persistent mismatch within a long regime segment creates a
service deficit that accumulates over time, leading to sustained backlog growth and loss of stability.
This motivates regime-adaptive scheduling and, in our instantiations, the inclusion of a stabilizing
baseline expert to protect against inference errors.

Consider two queues Q; 1, Qr2. In each slot, the agent chooses a; € {1,2} and serves one packet
from queue a; (if nonempty). Let arrivals be regime-dependent with means
o Regime 1: E[A;; | z; =1] = Ay, B[As2 | z¢ = 1] = Ap,
o Regime 2: E[A;; | z; =2] = AL, E[As2 | z2: = 2] = An,
where Ay € (1/2,1) and Ay > 0 is small. We focus on stationary randomized priority policies that
serve queue 1 with a fixed probability p € [0, 1] (and queue 2 otherwise), independent of state.

Theorem 3 (No fixed randomized priority stabilizes both regimes). There exist Ay € (1/2,1) and

sufficiently small A;, > 0 such that:

(1) (Per-regime stabilizability) For each fixed regime z € {1, 2}, there exists a stationary policy that
stabilizes the two-queue system when the regime is held fixed at z.

(2) (Global impossibility for fixed priorities) No stationary randomized priority policy that serves
queue 1 with a fixed parameter p € [0, 1] stabilizes the system under regime switching when
regimes persist for sufficiently long contiguous periods.

Theorem 3 isolates a structural incompatibility. Specifically, under regime 1, stability requires
devoting a large service fraction to queue 1, whereas under regime 2 it requires devoting a large
fraction to queue 2. When Ay > 1/2, these requirements cannot be satisfied simultaneously by any
fixed service split (p, 1 — p). Unlike regret gaps in cost-only objectives, a queueing mismatch is
state-amplifying: once a queue becomes overloaded in a regime, the backlog accumulates and cannot
be instantaneously eliminated after the regime changes. This is precisely why regime adaptivity
and stability-aware safeguards (e.g., a safe expert or drift-based guardrails) matter in systems. We
provide the proof sketch for Theorem 3 below, and please see Appendix E for the complete proof.

Proof sketch. A fixed-p policy allocates long-run service fractions (p, 1 — p). In regime 1, queue
1 is the heavy queue and stability requires p > Ay (up to an arbitrarily small slack). In regime 2,
queue 2 is the heavy queue and stability requires 1 — p > Ay, i.e., p < 1 — Ag. When Ay > 1/2, the
inequalities p > Ay and p < 1 — Ay cannot both hold. Therefore, for any fixed p, there exists a
regime in which the heavy queue has a strict service deficit; if that regime persists for long intervals,
backlog grows without bound, violating any strong stability notion. O

The above incompatibility implies not only instability but also an explicit linear growth of backlog
within a long segment of the “bad” regime. This result connects directly to our piecewise-constant
switching model and clarifies why slow switching does not rescue fixed stationary priorities.

Theorem 4 (Backlog grows linearly with Ly, under slow switching). Fix any stationary randomized
priority policy with parameter p € [0,1]. Choose Ay € (1/2,1) and sufficiently small Ay > 0 as in
Theorem 3. Then there exists a piecewise-constant regime sequence satisfying the minimum segment
length constraint Ly, such that, for infinitely many regime-segment endpoints t,

E[Qe1 + Qr2] > Q(Liin)- (17)
More concretely, letting §(p) = Ay — max{p,1 — p} > 0, there exists a regime segment of length Ly,
starting at some ty such that

E [Qfﬂ‘*'Lmin,i* - Qto,i*] > 6(p) Lmin — O(1), (18)
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where i* € {1, 2} is the heavy queue in that segment.

Theorem 4 quantifies the compounding effect of mismatch. Specifically, in a bad regime segment
of length Lun, the overloaded queue accumulates at least ©(Lyin) additional backlog in expectation.
Hence, even if regime switches are infrequent (large Ly, ), fixed stationary priorities are not merely
suboptimal. They can be unsafe in the sense of creating large transient backlogs that break stability
objectives. This directly motivates two design principles used later: (i) fast adaptation after a
detected switch (via gating/expert selection), and (ii) stability protection when the regime inference
is uncertain (via a stabilizing baseline expert with enforced minimum usage). We provide the proof
sketch for Theorem 4 below, and please see Appendix F for the complete proof.

Proof sketch. Fix p € [0, 1] and define §(p) = Ay — min{p, 1 — p} > 0, which is positive since
Ag > 1/2 implies min{p, 1 — p} < 1/2. Choose the “bad” regime so that the heavy queue is the
one that the fixed-p policy serves less often: if p < 1/2, use regime 1 (queue 1 is heavy); otherwise
use regime 2 (queue 2 is heavy). Let i* € {1, 2} denote the heavy queue in this bad regime, and
consider a regime segment [ty, fp + Ly — 1] during which the bad regime persists. In each slot of
this segment, queue i* has expected arrival rate Ay. Under the fixed-p priority rule, the probability
of selecting the heavy queue i* is exactly min{p, 1 — p} (by construction of the bad regime). Hence,
whenever Q; ;» > 0, the expected service (departure) from queue i* in that slot is min{p, 1 — p}, and
the one-step conditional drift satisfies

E | Qrsri — Quie | Quie > 0] > Ay —min{p,1 - p} = 5(p). (19)

Summing these positive drifts over the Ly, slots yields an expected backlog increase on the
order of 6(p)Lmin, up to an O(1) boundary term accounting for possible emptiness at the very
beginning of the segment and the [-]* truncation. Therefore, at the end of such a bad segment,
B[Qty+Lypni — Oto.ir] = 6(p)Lmin — O(1), proving the stated linear-in-Liyin growth. Repeating such
bad segments infinitely often (consistent with the piecewise-constant switching model) forces
arbitrarily large expected backlog, precluding strong stability. O

Together, Theorems 3-4 show that in queueing systems, regime switching can turn a seemingly
mild modeling change into a sharp stability challenge. Fixed stationary priorities are incompatible
with regimes that swap the identity of the bottleneck queue. This justifies regime-adaptive control
architectures and stability-aware safeguards in RL.

5 Algorithm Design: Regime-Aware Mixture-of-Experts Actor-Critic with Safety
Projection

Our goal is to achieve sublinear tracking regret in RS-MDPs while maintaining stability in queueing
instantiations. Impossibility I shows that a single stationary behavior can have an Q(1) per-step
gap under conflicting regimes, hence we must represent multiple specialized behaviors and select
among them online. Impossibility II further shows that, in queueing systems, persistent regime
mismatch can create a sustained service deficit and destroy stability, hence the selection mechanism
must be robust to inference errors and exploration.

We propose Regime-Aware Mixture-of-Experts Actor-Critic (RA-MoE-AC) with Safety Projection
(see Algorithm 1), which combines four tightly coupled components, including (i) M expert actors
{ﬂ;::) }M_ to represent regime-dependent behaviors, (ii) a state-dependent gating rule go(- | s) to

perform online expert selection for regime inference, (iii) per-expert critics {V&,:)} (and average-
cost estimates {¢™}) to generate low-variance advantage surrogates, and (iv) a safety projection
that enforces a minimum selection probability on a stabilizing expert in queueing instantiations.
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Algorithm 1 Regime-Aware MoE Actor-Critic with Safety Projection (RA-MoE-AC)

M
m=1’

gating gg(- | s), critics {V‘E,:) M_ . stepsizes {B, a:, s, p:}, safe

expert Mgyfe, minimum probability pmin € (0, 1), clipping constant C.
1: Initialize ¢\, w't), e for all m, and 6V
2: fort=1,2,...,T do
3: Observe s;

Require: Experts {ﬂ;m) }

4 Compute gate g;(m) < g (m | s¢) for all m

5: Safety projection: g;(-) < I1(g;(*) ; §¢(Msafe) = Prmin)

6: Sample expert m; ~ g;(+)

7: Sample action a; ~ 71';7:)[) (- | s¢)

8: Execute action a;, andm(;bserve cost ¢; and next state s;41

9 (Selected expert) average-cost update: ¢+ « (1 — p,)e™o!) 4+ p, ¢,

10: (Selected expert) TD residual: 5,('"’) — ¢; —clmet) 4 V('(';)') (se41) — V('('Zf) (s¢)
t t

Wi Wi
11: Critic (fast timescale): w,(yffl) — w,(yf[) - By 5;'"‘) VWV‘ﬁ,mZ)(s,)iwzwfrﬂ
12: Actor (slow timescale): gb,(,f;rl) — ,(,ft) —-a 5t(mt) V4 log ﬂ;m‘) (ar | st)|¢>=¢fﬁ>
13: Gating loss: t
14: if full information then
15: Compute 5;'") for all m via (20) and set #;(m) « £,(m) via (21)
16: else
17: Set #;(+) via the bandit estimator (22)
18: end if
19: Gating update: update e+  9() _ ng( an'lzl go(m | sp) Z’;(m))|9 .

20: end for
21: return mixture policy g 4 in (5)

5.1 Technical Difficulties and Design Ideas

Before formally introducing Algorithm 1, we highlight the core technical difficulties created by
regime switching and explain the corresponding design ideas implemented in Algorithm 1.

D1 (critic drift under switching): Bellman targets change within the horizon. When z, switches,
both the stationary distribution and the (average-cost) Bellman equations change. As a result, a
critic trained on one segment can be systematically biased on the next, which then corrupts actor
gradients. To address this, we maintain per-expert critics and update the selected expert critic on
the fastest timescale (Algorithm 1, TD residual and critic update; Lines 9-11). Under slow switching
and per-regime mixing, these updates track the segment-local value surrogate.

D2 (latent regime inference): the agent must select the right expert without observing z;. Sublinear
tracking regret requires a mechanism that quickly concentrates probability on the expert most
compatible with the current regime, even though z; is hidden. To address this, we treat gating
as online learning driven by a bounded mismatch loss based on TD residuals (Algorithm 1, loss
computation and gate update; Lines 13-18). This directly operationalizes “regime inference” from
observable trajectories.

D3 (coupled learning): gate quality depends on experts and expert learning depends on the gate.
If the gate collapses early, non-selected experts stop receiving samples and cannot improve. In
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addition, if experts are inaccurate, the gate receives noisy mismatch signals and may oscillate
after switches. To address this, we develop (i) timescale separation f5; > n; > «, (critic fast, gate
intermediate, actor slow), (ii) clipped gating losses to control variance (Line 13), and (iii) an explicit
sampling floor via safety projection (Line 5), which prevents complete starvation of the stabilizing
expert.

D4 (stability under inference errors): wrong expert selection can be catastrophic in queues. Impossi-
bility II shows mismatch can create a sustained service deficit and backlog growth within a long
segment, so stability cannot be left to “emerge” from regret minimization alone. To address this,
we embed a known stabilizing baseline 7g,f. as expert mg,f. and enforce §;(Mgafe | St) = Pmin at
every time (Algorithm 1, safety projection; Line 5). This provides a direct handle for Lyapunov-drift
arguments in the stability analysis.

D5 (switching overhead): the gate must react fast after a regime change. Even under slow switching,
the post-switch transient dominates performance if the gate re-concentrates too slowly. To address
this, gate stepsize 1, is chosen to balance noise and responsiveness (Line 18), and the TD-residual-
based loss naturally spikes right after a switch, accelerating reweighting.

5.2 Main algorithm: RA-MoE-AC with safety projection

We present a regime-aware MoE actor-critic algorithm (with safety projection for queue stability).
For each expert m, we maintain actor parameters ¢,,, critic parameters wy, for a differential value
approximation V‘E,Z) (s), and an average-cost estimate ¢™). At each time t, the gate produces a
distribution over experts, and then we enforce safety and sample an expert to act. Given transition
(st, ass ¢1, St+1), we define the average-cost TD residual for expert m by

8™ 2 ¢y — am 4 VI (5,40) = VM (s,). (20)
We use the clipped squared residual as a bounded mismatch loss, i.e.,
£(m) £ clip((5™)%,0,0), (21)

so that experts whose critics are more Bellman-consistent on the current trajectory receive lower
loss and therefore higher gate weight. When M is small, we compute 5t(m) (and thus ¢ (m)) for
all m and update the gate with full-information losses (Lines 13-14). However, when M is large,
we can update using only the selected expert m; via an unbiased importance-weighted estimator
(Lines 15-17)

{m =m;}
Ge(my | s¢)
Our main theorems later analyze the full-information gate. However, the bandit variant follows
standard EXP3-style arguments with the usual VM dependence. Moreover, for queueing-system
instantiations, we assume there exists a known stabilizing baseline policy 7. (e.g., a MaxWeight-
type rule) that ensures a Lyapunov drift condition for the queue component Q;, implying positive
recurrence (strong stability) of the induced queueing process. This baseline can be embedded as a
dedicated “safe expert” in the mixture, and our algorithm enforces a minimum selection probability
for it to guarantee stability. Specifically, our algorithm includes four components addressing the
difficulties discussed in Section 5.1.

f(m) clip((8™)?,0,C), (22)

C1 (Lines 3-8): gating for safe sampling. The gate gg( (- | s¢) converts the latent-regime problem
into online expert selection. The safety projection (Line 5) enforces §; (Mgafe) = Pmin, guaranteeing
that stabilizing actions remain available even when regime inference is wrong. Sampling m; ~ g;
(Line 6) implements the mode-selection decision required to circumvent Impossibility I. Then,
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the algorithm acts using the selected expert policy (Line 7) and observes (¢, s;+1) (Line 8). Under
regime switching, this single transition is the only information available.

C2 (Lines 9-11): fast critic tracking produces a usable advantage signal. Line 9 updates ¢(™) to
maintain a running estimate of the expert’s average cost. Line 10 forms the centered TD residual
sime ), which is an advantage surrogate for the actor and a mismatch certificate for the gate. Line 11

t g g g

updates w,,, on the fast timescale, reducing critic drift within a regime segment (D1).

C3 (Line 12): slow actor update avoids chasing switching transients. Line 12 performs the policy-
gradient step using 5;’"’) as the advantage estimate. Keeping a; smaller than the gate step-sizes
prevents the actor from overreacting to the immediate post-switch transient, which is critical when
Lpnin is only moderately larger than the mixing time (D3-D5).

C4 (Lines 13-18): gate update reweights experts using bounded mismatch losses. Lines 13-17 define
7, (-) either from full-information losses (small M) or from the bandit estimator (large M). Line 18
then updates 6 to reduce the expected mismatch under the gate at state s;. After a regime change,
TD residuals for mismatched experts spike, so the gate update naturally re-concentrates on the
best expert for the new segment (D2, D5), while clipping controls variance and supports finite-time
analysis.

6 Theoretical Analysis

This section states finite-time guarantees for Algorithm 1 that are consistent with: (i) the RS-MDP
model and tracking-regret metric in Section 3, (ii) the necessity of regime adaptivity highlighted
by the impossibility results in Section 4, and (iii) the MoE actor-critic with TD-residual-driven
online gating and safety projection in Section 5. We emphasize switching-aware bounds that scale
explicitly with the number of regime switches Sr, the minimum segment length Lp,, and the
per-regime mixing time fpx.

6.1 Preliminaries: Two-Level Benchmarks, Regularity, and Mixing

Recall the regime process is piecewise constant, i.e., there exist switch times 1 =7 <7y <--- <
75, < T such that the regime is constant on each segment 7 = {rx_1,..., 7% — 1}, k=1,...,57 + 1.
Let zi denote the regime on Zi, and let Ly = |Zi|, so that Ly, = ming L. Our tracking regret Reg(T)
in (4) benchmarks against the regime-optimal stationary policy 7*(*), which may lie outside the
MoE expert families. To separate learnability within the class from modeling mismatch, we introduce
an intermediate, in-class comparator. For each expert m € [M], let 1™ £ {ﬂém) : ¢ € @} denote
its policy family. Define the in-class per-regime oracle (breaking ties arbitrarily) by

(m'(2), ¢'°(z)) € arg MiNye[ M) ped,, J@ (ﬂ;m)) and 7¢(®) 2 ﬂq(SZl:z()Z))' (23)
We quantify the unavoidable policy-class mismatch by the per-regime approximation gap
Approx,, £ max ( 7@ (ﬂ_ic,(z)) o (ﬂ.*,(z))) > 0. (24)
z€

Later, our regret bound naturally decomposes as Reg(T) < learning regret for 7'%(*) + TApprox_,
so Approx,. captures the portion that no algorithm can remove without enlarging the expert class.

Regularity assumptions. We use two standard mild technical conditions to control stochastic-
gradient magnitudes and to ensure the critics are well-posed.
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Assumption 1 (Bounded score functions). For the policy class under consideration, we assume
bounded score functions, i.e., there exist constants G, G; < oo such that for all m € [M],

1V, log 7™ (a | )| < Gy and [|[Vgloggo(m | 5)I| < Gy. (25)

Assumption 2 (Critic realizability). Fix z € Z and an expert policy ﬂ;m). Let 4*™ be the
stationary distribution of the induced Markov chain under (P, ném)), and define (=™ £
B, yzm [¥(s)¥(s)T]. Assume »@EM e A uniformly over z,m, ¢, for some Ay, > 0. More-

over, the average-cost projected Bellman equation admits a unique fixed point w*#™ (¢,,) in the
linear class, up to an additive constant in the differential value.

Remark 1. Assumption 1 holds for standard softmax/gated-softmax parameterizations with bounded
features and parameters, e.g., enforced via projection onto a compact set, ensuring uniformly
bounded stochastic gradients. Assumption 2 is a standard identifiability condition. It makes the
linear TD normal equations well-conditioned under each (z, m), so the critic target (projected
Bellman fixed point) is well-defined and trackable.

Mixing as a regime-wise systems property. The property below formalizes that, within any regime
and under any stationary policy, the induced Markov chain forgets its initial condition quickly.

Definition 2 (Uniform geometric mixing within regimes). For every regime z € Z and every

stationary randomized policy 7 € Ly, let P(z)

PE (s | 5) 2 Zaeﬂ n(a|s)PD(s | s a). (26)

We say the RS-MDP satisfies uniform geometric mixing within regimes if, for each (z, ), the

be the policy-induced Markov kernel on S,

Markov chain with kernel P,([Z) admits a unique stationary distribution /1,(:), and there exist constants
Cmix = 1 and p € (0,1), independent of (z, ), such that for all s € S and all ¢ > 0,

TV ((Pff))’(s, ), u;(f)) < Caix P, (27)
where (P,(,Z) ) is the t-step kernel, i.e., the ¢-fold composition of P,(,Z).

Remark 2. Geometric mixing is a standard consequence of mild “randomization” and “connectivity”
conditions, which are often natural in systems models. A concrete sufficient condition is a uniform
Doeblin minorization, i.e., if there exist « € (0,1) and v € A(S) such that P(Z>( | s,a) > av(-) for
all z, s, a, then P(Z)( | s) = av(:) for all z, &, s. Writing P(z) =a1vT + (1 — «)P, one obtains the TV
contraction TV(,uP,(rZ), y'P,(rZ)) < (1-a)TV(y, '), which yields (27) with Cyyix = land p = 1—a.In
queueing/wireless models, analogous geometric mixing follows from a standard “drift-to-a-small-set
+ minorization” argument, i.e., exogenous randomness of arrivals and/or channels provides noise,
while a stabilizing and exploratory action floor ensures recurrent visits to a small set, together
implying geometric ergodicity of the controlled chain under each frozen (z, 7).

The property in Definition 2 indicates that burn-in bias decays geometrically (see Lemma 1).

Lemma 1 (Per-regime mixing and burn-in bias). Fix a regime z and any stationary policy & € g,

and letp(z) be the stationary distribution ofP,gz). Then, for any measurable f : S — [-1,1], any
initial state s € S, and any t > 1, we have

BLFs0) 151 =51 =B_io [F(5)]] < 2Cmnp ™" 28)

lOg(e/Cmix)

In particular, aftert > 1 + [ Tozp

-‘, the bias is at most 2e.
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Lemma 1 shows that within any regime z and under any stationary policy 7, the distribution
of the state s; converges geometrically fast to the stationary distribution ,u,(f). Consequently, time
samples collected after t,ix steps are approximately stationary. This lemma is the technical bridge
that allows us to treat each regime segment as “nearly stationary” after a short transient. See

Appendix G for the proof.

6.2 Main Results: Regime-Aware Tracking and Stability

This subsection formalizes the main theoretical guarantees for RA-MoE-AC. As motivated by the
impossibility results (Section 4), sublinear tracking regret requires both a multi-modal policy class
(experts) and an online expert-selection mechanism (gate). Our analysis follows a modular pipeline
from mixing, critic, to gating regret, regret decomposition, until the final main tracking bound, plus
a separate stability guarantee under safety projection.

Lemma 2 (Tracking of ¢™ and w,, within a fixed regime). Consider a segment I of length Ly
with fixed regime zi. Under Assumption 1 and Assumption 2, there exists a burn-in b = ©(tpix), such
that for allt € I witht > 11 + b and all experts m € [M], the full-information iterates satisfy

E [|e<"“> =J @

< O(pmax) + O(Pmax) + O (supuejk ;—u) +0 (Cmipr) i (29)

o
*,(Zf,m Ay
E [||w’(rf) — (s )(qs’(rf))”] < O(Pmax) + O (supue[k ﬂ_) +0 (Cmipr), (30)
u

where Pmax = sup,,¢ 1 Bus Pmax £ sup,,c 1 Pus> and constants depend only on (cmaxs Amins Ciixs £)-

Lemma 2 shows that within any regime segment, after a short burn-in, each expert’s critic
behaves as if it were trained on approximately stationary samples from that regime. The dominant
penalty is the standard timescale-separation term sup(a;/f;). If the actor moves slowly relative to
the critic, value surrogates can track quickly and do not corrupt the gate/actor updates. We provide
the proof sketch for Lemma 2 below, and please see Appendix H for the complete proof.

Proof sketch. Fix (zj, m) and ¢y, over a short window. Under Definition 2 and Lemma 1, the Markov
noise becomes nearly stationary after b = ©(ty;y), so the TD recursion is close to its mean ODE
(projected Bellman equation). Assumption 2 gives well-posedness and uniform conditioning, yield-
ing contraction of the mean dynamics. Finite-time stochastic approximation bounds for linear TD
with Markovian noise then give an O(fin.x) term, while the slow drift of ¢, contributes O(sup a/f).
The baseline estimator ¢ is a standard Robbins-Monro average-cost estimator, producing an
analogous O(pmayx) term. The O(Ciyix pb ) term is exactly the burn-in bias from Lemma 1. ]

Lemma 3 (Gate regret against a piecewise-constant in-class selector). Let g, (-) be the post-projection
distribution. For the comparator sequence m = m’ fort € Ir, we have

Z; Zf::l G (m)e, (m) — Z; 4(m) <0 (c Tlog M + CSr log M) . (31)

Lemma 3 shows that the gate pays the standard /T log M learning term, plus a switching
overhead proportional to St log M that accounts for re-concentrating after regime changes. This is
the precise formalization of the “switching overhead” discussed in design idea D2/D5. We provide
the proof sketch for Lemma 3 below, and please see Appendix I for the complete proof.

Proof sketch. Fixed-share Hedge is a standard reduction from switching comparators to a mixture
of restarted Hedge instances. One obtains a dynamic-regret bound against piecewise-constant
expert sequences with Sy switches, i.e., a /T log M term from within-segment learning plus an
additive St log M term from the share/restart mechanism. Scaling by the loss range C yields (31). O
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Lemma 4 (Regret Decomposition). Let Reg(T) be the tracking regret in (4). Under bounded costs,
we have

Reg(T) < kiRegyye (T) + Regac(T) + Regyyijen (T) + T - Approx,, + T - Approxy, (32)

where

® Regy,(T) = S S i (m)e(m) — 31, £, (ml°) is controlled by Lemma 3;

o Reg,(T) is the within-expert learning error caused by imperfect advantage surrogates and slow
actor updates, controlled by Lemma 2 and standard average-cost policy-gradient arguments;

o Regih(T) is the transient cost incurred in the first O(tmix) steps after each switch, before the state
distribution re-mixes and critic/baseline estimates re-center;

o Approx, is the policy-class gap defined in (24);

o Approxy, is the critic function-approximation bias.

Lemma 4 pins each term in the final bound to a concrete design component, including gating
controls Reg,,., per-expert critics control Reg ¢, and mixing controls Reg;;.,- The impossibility
results imply that without a mechanism reducing Reg,,., i.e., the multi-modal representation and
selection, one cannot generally achieve Reg(T) = o(T). We provide the proof sketch for Lemma 4
below, and please see Appendix ] for the complete proof.

Proof sketch. Add and subtract the in-class selector and the regime-optimal benchmark:

Reg(T) = (Cr () — Cr(in-class selector)) + (Cr(in-class selector) — C5) . (33)

learn+gate+transients < TApprox,,

The first bracket is controlled by calibrating instantaneous excess cost by TD-losses, bounding
gate dynamic regret, bounding critic/baseline tracking error within segments, and charging at
most Cmaxtmix per switch for burn-in/mixing transients. The critic approximation bias contributes
TApproxy,. O

Theorem 5 (Tracking regret for RA-MoE-AC). Under Assumption 1 and Assumption 2, the full-
information RA-MoE-AC variant satisfies

Reg(T) <O (KIC Tlog M + k1CSt log M) +0 (\/T) + O (CmaxSttmix) + T(Approx,, + Approxy,).
(34)
In particular, if St = o(T) and Approx,, + Approxy, = o(1), then Reg(T)/T — 0.

The bound in Theorem 5 decomposes into four important parts: (i) regime inference cost
T log M + St log M; (ii) within-regime learning cost that is sublinear in T under timescale sepa-
ration; (iii) post-switch mixing/transient cost tyix per switch; (iv) irreducible approximation bias
from policy classes. This matches the qualitative lessons of Impossibility I that without multiple
experts and a gate, the selection term cannot be sublinear in general. We provide the proof sketch
for Theorem 5 below, and please see Appendix K for the complete proof.

Proof sketch. Start from Lemma 4. Bound Reg,, . (T) by Lemma 3. Bound Reg(T) using Lemma 2
to control baseline/critic tracking error and standard average-cost actor-critic analysis to convert
advantage estimation error into cumulative performance loss, yielding a O(VT) term under the
two-timescale stepsizes. Bound Reg, ., (T) by charging at most O(cmaxtmix) per switch (burn-in
until near-stationarity). Add approximation terms TApprox, and TApproxy,. O

Remark 3 (selected-expert-only variants). If one updates critics/actors only for the sampled expert
and/or uses bandit losses (e.g., EXP3-style importance weighting), then (34) holds with the standard
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additional factors, either an explicit exploration-floor assumption ensuring each expert is sampled
often enough within each segment, or an importance-weighting variance term (typically yielding a
VM factor in the gating bound). All other components remain unchanged.

Theorem 6 (Stability under safety projection). Let §;(Msafe) = pmin > 0 for all t. Then, the queue
component Q; is strongly stable. In particular, there exist constants B < co and € > 0, such that for the
Lyapunov function L(Q) = %||Q||2, we have

E[L(Qr+1) = L(Q:) | Q¢] < B —€llQ:ll1, (35)

and hence
. 1 T B
limsupy_o, 7 >, ELIQ] <~ (36)
Theorem 6 operationalizes the key message of Impossibility II. That is, queueing mismatch can
be catastrophic, so stability should be enforced by design. Safety projection yields a regime-agnostic
stability floor, while Theorem 5 quantifies efficiency loss relative to the regime-aware benchmark
within that stable envelope. Please see Appendix L for the complete proof of Theorem 6.

7 Numerical Results

We evaluate RA-MoE-AC (Algorithm 1) on the queueing system instantiation in Section 3.4.1 and
focus on two questions aligned with our theory, i.e., switch tracking relative to the regime-aware
benchmark and stability in queueing instantiations under latent regime mismatch. We compare
three methods, RA-MoE-AC, single-expert actor-critic (Single-AC, i.e., the same actor-critic update
but with one expert and no regime selection), and Safe-only (always deploy the stabilizing baseline
Tsafe)- All methods share the same policy and critic parameterizations when applicable. The only
difference is whether the agent can represent and select multiple regime-specialized behaviors.
We report time-average cost Vr () = % ST ¢, average tracking regret Reg(T)/T in (4), esti-
mated by simulating the regime-aware benchmark with oracle regime labels, and queueing stability
statistics % Zthl E||Q:|l; and max;<7 ||Q;||;- Due to page limits, all concrete simulation values
(horizon, switch schedule, arrivals/channels, feature maps, stepsizes, and ppin) are provided in
Appendix A. Additional experiments (ablations and scaling studies) are deferred to Appendix B.

7.1 Switch Tracking and Regime Inference

Figure 1 visualizes regime tracking on the queueing instantiation. The left figure plots the smoothed
instantaneous cost, and the right figure plots the gate probabilities §;(m) over experts (vertical
dashed lines indicate true switches). RA-MoE-AC exhibits two consistent behaviors across seeds.
First, after each switch, the gate rapidly reallocates probability mass from the previously preferred
expert to the expert that is compatible with the new segment. Second, this reallocation coincides
with a prompt recovery in per-slot cost. In contrast, Single-AC (M = 1) cannot express segment-
specific behavior. It adapts slowly and incurs elevated cost after switches. Safe-only remains stable
but is suboptimal in cost because it does not exploit benign regimes (it pays a persistent conservatism
premium). These observations match the mechanism suggested by our analysis.

7.2 Stability and Backlog Behavior in Queueing

Figure 2 plots the queue backlog evolution. Single-AC can suffer sustained mismatch in segments
where its learned service allocation is misaligned with the active regime, which yields persistent
service deficit and backlog growth. RA-MoE-AC avoids this failure because the gate can switch to
the appropriate expert, and because the safety projection enforces a nontrivial minimum usage
of a stabilizing expert, which prevents catastrophic excursions even when the gate is temporarily
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Fig. 1. Switch tracking in the queueing instantiation. Left: smoothed
instantaneous cost. Right: gate probabilities for RA-MoE-AC. Ver-
tical dashed lines mark true regime switches. RA-MoE-AC rapidly
reallocates probability mass after each switch and correspondingly
stabilizes the cost trajectory, while Single-AC exhibits larger and
longer post-switch cost transients, and Safe-only incurs a higher cost
level.

Ming Shi

B 400

ESS

8

£ 300

@L

g— 200 RA-MoE-AC

L --Single-AC (M=1)

> 100 Safe-only (MaxWeight)

b3 ;

@ 0- = S ’

o 0 2000 4000 6000
Time slot t

Fig. 2. Backlog and stability in the
queueing instantiation. RA-MoE-AC
maintains stable backlog with small
post-switch transients, while Single-
AC can exhibit large backlog excur-
sions under regime mismatch. Safe-

only remains stable.

Table 1. Summary metrics (mean + standard error). RA-MoE-AC improves time-average cost and tracking
regret relative to Single-AC, while remaining stability. Safe-only is stable but conservative.

Method Vr () Reg(T)/T % ZtT:1 EllQ¢ll1 max;<7 ||O:ll4
RA-MoE-AC (Alg. 1) 0.9541 £ 0.0049 0.1081 + 0.0060 6.89 £ 0.28 33.66 + 1.38
Single-AC (M = 1) 7.5186 + 0.2532 6.6727 £ 0.2513  340.73 + 12.66  577.28 £ 20.41
Safe-only (7,fe) 1.7437 £ 0.0009 0.8977 £ 0.0021 1.25 £ 0.05 15.19 £ 0.67

uncertain. Safe-only remains stable by design, but yields larger average cost because it does not
adapt service to the regime-dependent cost tradeoff (Figure 1). Overall, the backlog trajectories
provide direct empirical support for our key systems claim.

7.3 Summary metrics

Table 1 summarizes the main numerical outcomes. RA-MoE-AC achieves the best overall efficiency-
stability tradeoff. It improves time-average cost relative to Safe-only while preventing backlog blow-
ups that can occur under Single-AC. We emphasize that these are not tuned-to-win comparisons,
since all methods share the same parameterization and step-sizes, and we only vary whether the
agent can represent and select multiple regime-specialized experts (and whether safety is enforced).

8 Conclusion

We studied regime-switching MDPs for performance-critical systems with latent mode changes.
We show that even under benign dynamics and slow switching, any single stationary actor-critic
can be misaligned with a regime-aware benchmark, and in queueing instantiations mismatch can
break stability. Motivated by this, we proposed RA-MoE-AC with TD-residual-driven gating, per-
expert critics with timescale separation, and a lightweight safety projection enforcing a stabilizing
baseline. We prove switching-aware tracking bounds scaling with the number of switches and
mixing time, and strong stability under safety projection. Empirically, RA-MoE-AC re-concentrates
after switches, improves cost over conservative baselines, and avoids backlog blow-ups.
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A Simulation Setup and Hyperparameters
A.1 Common Protocol

Horizon and switching. We run each method for horizon T = 6000 with St = 3 switches and
minimum segment length Ly, = 1500. Switch times are 7y = 1, 7; = 1501, 7, = 3001, 75 = 4501,
and 75,41 =T + 1 = 6001. Unless stated otherwise, we use equal-length segments L, = 1500 and
alternate regimes as zx = 1 for k € {1,3} and z; = 2 for k € {2,4}.

Number of experts and safe expert. We use M = 3 experts, where experts m € {1, 2} are learned
and expert mg,f = 3 is a fixed stabilizing baseline. The safety projection enforces G, (Mgafe) = Pmin
with pmin = 0.05.

Seeds and confidence. We use Ngeeq = 20 random seeds and report mean + one standard error.
Time-series figures are smoothed using a moving average window of size 75.

Oracle regime-aware benchmark for regret. To estimate Reg(T) in (4), we simulate the benchmark
that applies 7(*) on each segment using oracle regime labels. For each regime z € {1,2}, we
approximate 7*(¥) by running the same actor—critic update with the regime held fixed at z for 2x 10°
steps (using the same policy/value parameterization as the learned agents), and then deploying the
resulting stationary policy whenever z; = z. This yields a fair in-class regime-aware benchmark.
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Table 2. Key notation.

Symbol Meaning

z; € Z latent regime (piecewise constant)

St number of regime switches up to time T

Linin minimum segment length

st €S system state (e.g., queues + exogenous variables)
a; € A control action

P transition kernel under regime z

c® instantaneous cost under regime z
Cmax uniform upper bound on per-slot cost
7™ expert m actor (policy)

bm
go(- | s) gating distribution over experts
Gy bound on expert policy score ||V, log n;m) (a9
G bound on gate score ||Vgloggg(m | s)||

g
Reg(T) tracking regret against regime-aware benchmark
Emix (uniform) mixing time within a regime

A.2 Queueing System Instantiation

Dynamics. We simulate a two-queue single-server system (a standard extension of Section 3.4.1
used to expose regime-mismatch instability). The state is s; = (Qy1, Qr2) With Q;; € R,. The action
is a; € {0, 1,2}, where a; = 0 means idle and a; = i means serve queue i. Service is one packet when
nonempty, i.e.,

Qrs1i = [Qui +A§§t) - {a, =i} +,i €{1,2}. (37)
Hence pmax = 1. Arrivals are independent Bernoulli:
AE? ~ Bernoulli(/lfz)), (38)
with regime-dependent rates
AW, 80y = (0.85,0.25), (A2, 1) = (0.25,0.85), (39)

so that the identity of the bottleneck queue swaps across regimes.
Cost. We use a backlog-energy objective
¢ (Q.a) =w (Qi+Q) +x* 1{a 0}, (40)
with w = 0.01 and energy-price coefficients
kW =0.02,x? =0.20. (41)

Thus, serving is cheap in regime 1 and expensive in regime 2, creating different cost-stability
tradeoffs across segments.

Policy and critic parameterization. Each learned expert uses a softmax policy over {0, 1, 2} with
linear action scores, i.e.,

7 (a | s) o exp(ui™ (5), 1™ () = (94™) T pa(s), (42)
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where ¢, (s) = [1, 01, Q-] and Q; = min{Q;/50, 1}. Per-expert critics are linear, i.e.,

Vi (s) = wa(s). ¥ (s) = [1, Or, Qa, OF O3 (43)
Gate parameterization. We use a softmax gate
go(m | s) o« exp(6,,04()), 0g(s) = [1, O1, Qs 01— Q] (44)

Safe expert. We embed a stabilizing MaxWeight-style baseline as expert mg, = 3, i.e.,

arg max; i, if + >0,
Maage : 4p = { g ie{1,2} O Q1+ Qs (45)

0, otherwise.

This baseline satisfies the drift condition in Theorem 6 for the simulated primitives, and the safety
projection enforces its minimum usage probability.

A.3 RA-MoE-AC Updates and Hyperparameters

TD residual and gate loss. We use the average-cost TD residual 5t(m) =c;—¢m 4 V,E,Z) (st+1) —
Véx) (s:) and define the gate loss

£ (m) = clip((6!™)2, 0, C) and C = 10. (46)
Step-sizes and timescales. We use constant step-sizes (stable finite-horizon behavior):
B =0.05,1 = 0.02, & = 0.005, and p = 0.02. (47)

We project policy and gate parameters onto £, balls of radius 5 to enforce bounded scores.

B Additional Numerical Results

This appendix reports additional experiments that stress-test RA-MoE-AC beyond the basic compar-
isons in the main paper. Unless stated otherwise, we use the same environments, horizons, switching
patterns, hyperparameters, and reporting protocol as in Appendix A. We report mean + one stan-
dard error over Ng.q seeds for time-average cost Vr (), tracking regret Reg(T)/T against the
oracle regime-aware benchmark, average backlog % th1 E||Q¢|l1, and peak backlog max; <7 ||Q;||1
(queueing system instantiations). When plotting time series, we use the same smoothing window
as in Appendix A.

B.1 Ablations: Which Mechanism Matters?

Figure 3 summarizes ablations on the gating signal, timescale separation, and the safety projection.

Gate signal ablation. We isolate the role of the gating feedback by changing only the gate loss
¢;(m) while keeping experts, critics, step-sizes, and safety projection unchanged. We compare
TD-residual losses (ours) to cost-only losses, advantage-only losses, and entropy-regularized cost
losses. We report time-to-reconcentrate after each switch (time until max,, §;(m) > 0.8) and post-
switch transient cost (area under the excess-cost curve over a fixed window). TD-residual losses
consistently yield faster re-concentration and smaller post-switch transients.

Timescale separation ablation. We sweep (a, 15, f) to violate the intended ordering (critic fast,
gate intermediate, actor slow), changing only step-sizes and keeping all other components fixed.
We report switching-transient cost and backlog peaks. When the critic is not the fastest component,
value estimates lag the segment-wise fixed point, TD residuals become noisy, and the gate oscillates,
increasing both cost and post-switch backlog spikes.
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Gate signal ablation: re-concentration time
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Fig. 3. Ablations. Left: gating loss variants (re-concentration and transient cost). Middle: step-size sweeps
showing the role of timescale separation. Right: safety projection sweeps.
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Fig. 4. Switching-frequency scaling. Tracking regret, transient cost, and backlog statistics versus St (and
induced Lyy).

Safety projection sweep. We sweep pmin € {0, 0.01,0.03,0.05,0.10} (changing only the projection
constraint) to quantify the conservatism-risk tradeoff. Larger pyin improves robustness (smaller
peak backlog and fewer rare excursions) at the price of a mild increase in time-average cost. Setting
Pmin = 0 can improve cost in benign segments but may allow catastrophic backlog excursions under
prolonged gate uncertainty.

B.2 Scaling with Switching Frequency and Segment Length

We vary the number of switches St while holding the horizon T fixed, using equal-length segments
(80 Limin = T/(St+1)) and the same alternating-regime pattern as in the main experiments. We report
Reg(T)/T, post-switch transient cost (fixed window after each i), and backlog statistics. The trends
in Figure 4 match the decomposition suggested by Theorem 5. That is, performance degrades as St
increases (more frequent re-inference and more transients), and improves as segments lengthen
relative to per-regime mixing.
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1226 Table 3. Additional baselines (mean = s.e.). Oracle regime-aware selection and QCD+AC variants.

1227

1228 Method Vr () Reg(T)/T 7 2 EllQ:l: max; <7 [|Q¢ll1

1229
Oracle regime-aware selector  0.6969 + 0.0009 -0.0024 + 0.0001  3.2326 + 0.0275 18.8566 + 0.5542

230
' QCD+AC (reset on detection) 1.1342 + 0.0421  0.4350 + 0.0420  15.7246 + 0.8973  73.3400 + 2.1504

1231

1232

1233

1230 B3 Additional Baselines in Table 3: Oracle and QCD-Style Switching

1235 Oracle regime-aware selector. We include an oracle selector that observes z; and always chooses
1236 the in-class best expert for that regime, i.e., m; = argmin,, J?) (#(™)) (ties broken arbitrarily).
1237 This isolates the performance loss due to imperfect online regime inference. Regret is estimated by
1238 Monte Carlo with an in-class regime-aware benchmark. Thus, small negative values may occur
1230 due to sampling error of the benchmark.

240
1 Quick change detection (QCD) with AC. We include a detect-then-adapt baseline that runs a

standard change detector on a scalar stream (we use the selected expert’s TD-residual squared
loss), and upon detection resets the actor-critic state (critic weights and average-cost baseline) and
restarts learning with a fixed exploration floor. This baseline separates explicit detection and reset
from continuous online gating.

1241
1242
1243
1244
1245

ij(; C Proof of Theorem 1

1248 Proor. Fix an arbitrary stationary randomized policy 7. Since 7 is stationary and the state space
1240 18 {5051}, define

1230 p=m(a|sy) €[0,1] and n(a” | sp) =1-p.
1251

1252 We do not need to define (- | s1) because costs at s; are always zero.
1253

1254 C.1 Step 1: The state s is visited exactly | T/2] times

1255 By construction, the dynamics are deterministic and regime-independent: s, = s1 if s; = 59 and
1256 ;49 = sg if s; = s1. Thus the chain alternates between the two states, regardless of the action choices.

1257 Assuming s; is the unique successor of sy and vice versa, the trajectory satisfies
1258
1259 $15 50, 51, S5 - - - O S0, S1, 505 S15 - - -

1200 depending only on the initial state. In either case, among the first T time indices, the number of

1 Visits to sp is exactly | T/2]. Denote this number by

1262
1263 I T

1264 No(T) = Z 1{s; =so} = [EJ (48)
1265 t=1

1266

C.2 Step 2: Expected cumulative cost under a fixed regime
1267

Consider first the case where the regime is constant over the entire horizon, ie., z; = z € {1, 2}.
Because costs at s; are always 0, only visits to sy contribute.

1268
1269

1270 C.2.1 In regime 1. At state sy, action a* costs 0 and action a~ costs 1. Therefore, conditioned on
1271 St = S0,

1272

1273 E [c(l)(st, a;) | s = So] =0-m(a"|so)+1-m(a” |s)=1-p. (49)
1274
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C.2.2 Inregime 2. The roles swap, and conditioned on s; = s,
E[c® (star) | st =s0] =1-7(a* | s0) +0-7(a” | s0) =p. (50)

Since the event {s; = so} is deterministic given ¢ (Step 1), by linearity of expectation we obtain

T T L
2|3 =3 2le 0] = 3 e =2 1= =11 )
=1 =1 =1
T T
E Z C(Z)(St, a;)| = Z I{s; = SO}P = NO(T)p' 1)
=1 =1

C.3 Step 3: Benchmark cost is identically zero

By definition, the regime-aware benchmark 7z} chooses the zero-cost action at s, for the active
regime: it chooses a™ when z; = 1 and a~ when z, = 2. At s, both actions have cost 0. Hence, for
every time ¢, the incurred cost under 7 is 0, and therefore

Ci2E

T
2 C(Z”(sfiaf*)] =0, (52)
=1
for any regime sequence {z;}.

C.4 Step 4: Choose a piecewise-constant regime sequence that maximizes the loss of «

Define a constant (hence piecewise-constant) regime sequence as follows:
1, if1-p>p,
Zr = .
2, ifp>1-p.

Equivalently, choose the regime z that makes 7’s expected cost at sy equal to max{p,1 — p}.
Under this regime sequence, combining Steps 2 and 3,

Reg(T) = Cr(x) — Cj = Cr(x) 2 No(T) max{p,1 - p} = EJ max{p.1-p}.  (53)

Finally, since max{p, 1 — p} > 3 for all p € [0, 1], we obtain the universal bound

Reg(T) > {gJ . %

> — - (54)

|
N | =

This implies Reg(T) = Q(T) and Reg(T)/T = Q(1).

D Proof of Theorem 2

Proor. Fix any stationary randomized policy 7 and any Ly, > 1. Let p = w(a™ | so). As in the
proof of Theorem 1, the regime-aware benchmark incurs zero cost at all times, so for any admissible
regime sequence {z;},

Reg(T) = Cr(rr) — C; = Cr (). (55)

We show that there exists an admissible piecewise-constant regime sequence (with minimum
segment length Lp;,) under which Cr () grows linearly in T.
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D.1 Case (i): no switching
Choose z; = z constant forall t = 1,..., T, where z € {1, 2} is selected as in Theorem 1 to maximize

7’s expected cost at sg. This regime sequence has St = 0 and a single segment of length T, hence it
satisfies the minimum segment length constraint for any Ly, < T. By Theorem 1,

T T 1
Reg(T) = Cr(n) > [EJ max{p,1-p} > 7 - > = QT). (56)
D.2 Case (ii): switching with segment length exactly Ly,

Assume T is a multiple of 2Ly, (as stated in (16)) and set K = LL as an even integer. Partition the
horizon into K consecutive segments of length Ly;,:

T 2 {(k=D)Lmin + 1., kLmin}, fork =1,..., K. (57)

Define a piecewise-constant regime sequence by alternating regimes:

(58)

1, t € I with k odd,
Z+ =
! 2, t € Iy with k even.

Every segment has length exactly Lpyin, so the minimum segment length constraint is satisfied.

D.2.1 Step 1: within each segment, s, is visited at least | Liin /2] times. Because the state alternates
deterministically between sy and s; at every time step, in any consecutive block of length Ly, the
number of indices t with s; = s is either | Lyin/2] or [Lmin/2], depending on the parity of the block
start. In particular, it is always at least | Liin/2]. We define Nox = 37, 1{s; = so}, then we have

Lmin
Nox > [TJ forallk =1,...,K. (59)

D.2.2  Step 2: expected cost per segment. In a segment with regime 1, each visit to sy contributes
expected cost 1 — p; in a segment with regime 2, each visit contributes expected cost p. Costs at s;
are always 0. Therefore,

1—
E Z ¢ (sp,ap) | = (1=p) Nok. Kk odd, (60)
= P Nok k even.

D.2.3  Step 3: sum over alternating segments. Because K is even, there are exactly K/2 odd segments
and K/2 even segments. Summing the lower bound Ny > | Lmin/2] and using (1 —p) +p =1, we
get

K K
Reg(T) =Cr(m) =E | > > ¢®(spar)| = Y B| D (s, (61)
k=1 tel; k=1 tely
Lmin Lmin
ZZ(I—p)[ZMZP{ZJ (62)
lf(s)(li(d kkesvlgn
K Lmin _K Lmin
e HCRR R el (63
Substituting K = T /Ly, yields
T Lmin
Reg(T) > — | =22 |. (64)
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Using the elementary bound | x| > x — 1 with x = Ly,/2, we obtain |_L“2““J > LLZ‘“ —1, and therefore

T Ly 1 1
= 1| ==~ T, (65)
2Lmin 2 4 2Lmin
which matches (16).

Combining cases (i) and (ii), we conclude that for any Ly, > 1, there exists an admissible
piecewise-constant regime sequence satisfying the minimum segment length constraint such that
Reg(T) = Q(T).

Reg(T) >

]

E Proof of Theorem 3

We consider a two-queue, single-server, discrete-time system. Let Q;; € Z, denote the backlog of
queue i € {1, 2} at the beginning of slot ¢. In each slot, the controller chooses an action a; € {1, 2}.
If Qrq, > 0, one packet departs from queue a;; otherwise the service opportunity is wasted (the

server idles). Let A;j’) € {0, 1} denote arrivals to queue i during slot ¢ under regime z;. The queue
dynamics are
Qre1i = Qri = Dy + A and Dy; = 1{a, = i}1{Q; > 0}, for i € {1,2}. (66)
We construct arrivals as i.i.d. Bernoulli random variables across time and queues conditioned on
the regime, with means
E[A")] = 24, E[AY)] = Ar; and E[AY)] = AL E[AY] = Ap, (67)
where Ay € (1/2,1) and A1 € (0,1 — Ay). This ensures the system is stabilizable in each fixed
regime.
Fixed randomized priority policies. A stationary randomized priority policy with parameter
p € [0,1] is defined by
Pr(a; =1) =pand Pr(a; =2) =1 - p, forall ¢, (68)

independently of the state/history (thus it may waste service when the selected queue is empty).

Proor. We prove the two items in Theorem 3 by explicit construction.

E.1 Item (1): per-regime stabilizability
Fix a regime z € {1, 2}. Let (A1, ;) denote the arrival means under that regime; by (67), (11, 42) =
(A, Ap) if z = 1 and (Aq, A2) = (A, Ag) if z = 2. By assumption, Ag + A < 1.

Consider the following work-conserving stationary policy 7% ()

o if exactly one queue is nonempty, serve the nonempty queue;
e if both queues are nonempty, serve queue i with probability «;, where ay, a2 > 0, a1 + oz =1,
and a; > A; forbothi =1,2.
1-(Li+4s)

Such (a1, @) exist because A; + A; < 1; for example, choose a; = A; + )

Let V; = Q41 + Q2. Under a work-conserving policy, whenever V; > 0 the server necessarily
serves one packet from a nonempty queue, so the total departure satisfies D;; + D;2 = 1. When
V; =0, we have D;; + D; 5 = 0. Summing (66) over i € {1, 2} gives

Vear = Vi = (A7) + A%)) = (D1 + Dro) = (A + AZ)) - 1{V; > o}. (69)
Taking conditional expectation given V; yields

ElVi1 = Vi | Vil = (A1 + 42) = I{V; > 0} < —e - 1{V; > 0}, (70)
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where € 2 1 — (A1 + A3) > 0. Thus, for all states with V; > 0, the drift of V; is uniformly negative by
at least €. By a standard Foster-Lyapunov criterion for countable-state Markov chains (using V as
a Lyapunov function), this implies positive recurrence of {(Q; 1, Q;2)} under regime z and hence
strong stability (13). Therefore, each fixed regime is stabilizable by a stationary policy.

E.2 Item (2): impossibility for fixed randomized priorities under switching

Fix an arbitrary p € [0, 1] and consider the fixed priority policy (68). We show that there exists a
piecewise-constant regime sequence for which the system is not strongly stable. Define the “bad”
regime for this p as

1, ifp < Am,

Zhad(p) = { (71)

2, otherwise.
This choice is always valid because if p > Ay, then 1 —p < 1— Ay < Ay (since Ay > 1/2), so regime
2 makes queue 2 heavy with arrival Ay but service attempt probability 1 — p < Ag.

Now consider the (piecewise-constant) regime sequence z; = zp,q(p) for all . Let i* be the heavy
queue under that regime: i* = 1 if zp,q(p) = 1 and i* = 2 if zp,4(p) = 2. Under the fixed-p policy,
the action attempt probability for serving queue i* is

. | P " =1,
4 72
s(p) {1_1), ., (72)
By construction, s(p) < Ag.

From the queue update (66), we always have the inequality

Qs 2 Qrir — Mar =i"} + Aﬁ,z,-‘l"‘d(p))- (73)

Indeed, when Q; ;+ > 0, the departure is exactly 1{a; = i*}; when Q; ;+ = 0, the true departure is 0

and thus subtracting 1{a, = i*} only makes the right-hand side smaller, so the inequality holds.

A (#ba (P))]
"

Taking expectation of (73) conditional on Q; ;» and using E[ 1{a; = i*}] = s(p) and E[
Ax, we obtain

E[Qt1,iv | Qrir] 2 Qi + (A — s(p)). (74)
Taking total expectation and iterating yields, for all t > 1,
E[Qrir] 2 E[Quir] + (£ = 1) (Am = s(p)). (75)

Since Ay — s(p) > 0, E[Q; ;<] grows at least linearly in .
Finally, strong stability (13) fails because

(T-1)
2

1« 1 v 75 1
7 D BlOu +Qu2l = 2 Y ElQer] = = > (= D —s(p)) = (A = 5(p)) == .
t=1 t=1 t=1
(76)

Therefore, the fixed randomized priority policy with parameter p is not strongly stable under the
(piecewise-constant) regime sequence z; = zpad(p). This proves item (2) and completes the proof.
[m}

F Proof of Theorem 4
Proor. Fix p € [0,1] and consider the fixed randomized priority policy (68). Define

Smin(p) 2 min{p, 1 - p} € [0,1/2] and 5(p) = Ayt — smin(p)- (77)
Since Ay > 1/2, we have §(p) > Ay — % > 0.
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F.1 Step 1: construct a regime sequence with minimum segment length L,

Define the “bad” regime as the regime in which the heavy queue is the less frequently attempted
queue under the fixed-p policy:

(78)

. |1, ifp<1/2 (queuelisattempted with prob. p = smin(p)),
Zbad =
bad 2, ifp>1/2 (queue 2 is attempted with prob. 1 — p = spin(p)).

Let i* € {1, 2} denote the heavy queue under regime zp,q (so i* = 1if zp,qg = 1 and i* = 2 if zp,59 = 2).
Under the fixed-p policy, the attempt probability to serve queue i* equals spin (p).
Now define a piecewise-constant regime process by alternating regimes in segments of length
exactly Lyin:
Zbads te{(2k —2)Lyin +1,...,(2k = 1)Liyin },
z = bad {( ) min ( ) mm} k=1,2,... (79)
3 —2pad, t € {(2k—1)Lpin +1,...,2kLyin},
Every segment has length Ly, hence the minimum segment length constraint is satisfied. The
endpoints of the bad-regime segments occur at times t; = (2k — 1)Lmin, k = 1,2,..., which are
infinitely many regime-segment endpoints.

F.2 Step 2: backlog increase over any bad segment is linear in Ly,

Fix any bad segment [y, to + Lmin — 1] in which z; = zp,aq for all t € [y, to + Limin — 1]. For the heavy
queue i*, the same inequality as in (73) holds for every slot in this segment:

Qrsrir 2 Qrir — Ma, =i} + Aij‘i“)- (80)

Summing from ¢ = ¢y to ¢y + Lmin — 1 and telescoping gives

to+Lmin—1 to+Lmin—1
E (Zbaa) E _ i
th+Lmin,i* - Qf(),i* 2 At!igad - I]-{at = l*}' (81)
=ty =ty

Taking expectation and using ]E[A;j‘;ad)] = Ay and E[1{a; = i"}] = smin(p), we obtain

E[Qto+Luini* — Qtoi*] = (At = Smin(P)) Linin = 8(P) Lmin.- (82)
Since E[Qy,i+] = 0, (82) implies

E[th+me,i*] 2 6(p)Lmin- (83)

F.3 Step 3: infinitely many regime-segment endpoints
Apply (83) to each bad-regime segment. In the constructed regime sequence, the endpoint of the
k-th bad segment is tx = (2k — 1) Lyin. Thus, for all k > 1,

E[Qt.i*] = 6(p) Lmin- (84)

Therefore,

E[Qn1 + Quzl 2 E[Qpir] 2 6(p) Limin, (85)

for infinitely many regime-segment endpoints t. This proves the claimed ©(Ly;,) lower bound
(with an explicit constant 6(p) > 0).

The above argument yields a clean bound without an O(1) slack because we used the inequality
QOr+1* = Qri» — L{a; = i*} + A;+, which holds even when the queue is empty and the service
attempt is wasted.

[m]
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G Proof of Lemma 1
Proor. Fix a regime z and a stationary policy x. To simplify notation, write P = P,(,Z) and

p=py,

G.1 Step 1: Express the distribution of s; via the t—1-step kernel

Conditioned on s; = s, the distribution of s; is given by the (¢ — 1)-step transition kernel:

L(st|s1=5) =P (s,), (86)
because P!~! is the (¢ — 1)-fold composition of the one-step kernel P. Therefore,
E[f(se) | s1=5] = Exulf(x)] = /Sf(x)PH(s, dx) - /Sf(X)#(dx)- (87)

G.2 Step 2: Use the dual characterization of total variation

Define the signed measure v = P'~1(s,-) — u. Then, (87) becomes

E[f(se) [ s1=5] = Bxp[f(x)] = /Sf(X) v(dx). (88)

Recall the standard inequality (a consequence of the definition of total variation): for any measurable

£ with [|flle < 1.

'/ f(x) v(dx)| < 2TV (P"71(s, ), p) - (89)
S
For completeness, we justify (89): for any two probability measures «, f on S,
TV(a, ) = sup |a(A) - (A)], (90)
AcCS
and one equivalent dual form is
1
@p) = 5 sup | [ gdta- ﬁ)‘ . (o1)
2 Jlgllost

Applying this with & = P!71(s,-), B = p, and g = f gives (89).
G.3 Step 3: Apply the geometric mixing assumption
By (27) with ¢ — 1 in place of ¢, we have
TV (P71(s, ), pt) < Comixp' ™ (92)
Combining with (89) yields
[ELf(s) | 51 = 5] = Bxv[f(0)]] < 2Cmix p"™, (93)
which is exactly (28).

G.4 Step 4: The e-burn-in result
If Cixp” ™! < €, then (28) implies the bias is at most 2¢. This completes the proof.

H Proof of Lemma 2

Proor. Fix a segment Iy = {7x_1, ..., x — 1} on which the regime is constant and equal to zx = z.
Fix an expert m € [M] and, within this proof, suppress the superscript (m) when no confusion
arises. Let #; be the natural filtration generated by all randomness up to time ¢.
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H.1 Objects, fixed points, and the within-segment “frozen-¢” viewpoint
For each time t € J, denote the expert policy by m;(- | s) = 7 (- | s) and the induced Markov

o
kernel on S (under regime z) by

Pi(s|5)2 ) mlals) PO |s.0). (94)

acA

Let pi; be the stationary distribution of P; (existence/uniqueness is guaranteed by Definition 2).
Define the steady-state average cost of 77; under regime z by

Je = ]<Z) (ﬂt) = Es~y;,a~n’,(~|s) [C(Z) (S, a)] . (95)

For the critic, recall the linear differential-value approximation V,,(s) = ¢/(s) "w. Under regime z
and policy 7, define the (average-cost) TD feature matrix and vector:

A} 2 B [105) G5) = ()], ©6)
b: = E(s,a)~pt><7r, [(Jt - C(Z) (S, a))lﬂ(s)] . (97)

Assumption 2 (realizability) implies that the projected average-cost Bellman equation has a unique
solution w} (up to an additive constant in the differential value; the linear parameter wy is unique
under the standard convention that removes this constant), equivalently

Alwl = b (98)

Moreover, Assumption 2 yields uniform conditioning, i.e., there exists A4 > 0 (depending only on
Amin and boundedness of ¢) such that

Omin(A}) = A4 for all t € I, (99)
and hence |[(A})7!|| < 1/A4 uniformly.

H.2 Full-information critic/baseline updates analyzed in this lemma

Within the segment, we analyze the standard full-information (per-expert) average-cost TD(0)
recursions:

¢ = (1-p)e™ + prey, (100)
wt*D =3O _ 5,0 (sp), (101)

where ¢; = ¢\?) (s;, a;) and the TD residual is
S -+ ‘p(stﬂ)TW(t) - lﬁ(u‘?t)-rw(t)- (102)

(The statement of the lemma concerns the full-information iterates; this recursion is exactly the
per-expert recursion used in the analysis. All constants below are uniform in (z, m).)

H.3 Burn-in and a clean bias bound after mixing

Fix b > 1 (to be chosen as b = O(tpiy)). By Lemma 1, for any bounded measurable f : S — [-1,1]
and any t > 1x_1 + b,

ELf(st) | Frs] = Boop, [F(9)]] < 2Cmixp” . (103)

In particular, for any bounded g(s,a,s”) € [—1, 1], the same bound holds for g evaluated along
one-step transitions by applying (103) to the Markov chain on the augmented state space (or by
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conditioning on s; and using boundedness); we will use this informally as

E[g(st, ar, st41)] = E(g a5y ~prxmexp= [9(s,a,87)]| < O(Cumixp?). (104)

H.4 Tracking of the average-cost baseline ¢(*)

Define the baseline error
e ¢t . (105)
From (100), we have
ery1 = g+ = Jr+1

=(1-p)e" + pres = Joa

= (1-p) (@ = J) + pe(ce = Jo) + (1= pr) s = Jewr)- (106)
Taking absolute values and expectations yields
Elles+1l] < (1= po)Ellecl] + peElle: — Jell + (1 = pr)E[Je1 — Jell. (107)

Since 0 < ¢; < cpax, we have |¢; — J;| < cpmay and thus

peE[ler = Jell < premax < CmaxPmax- (108)
Because the policy parameters move on the slow timescale a; and the policy-score is bounded
(Assumption 1), standard smoothness/perturbation arguments under uniform mixing imply that
J@ (Jrq(sm)) is Lipschitz in ¢ over the (compact) parameter set used in the analysis, i.e., there exists
Lj < oo (depending only on (¢max, Cmix> P> Gr)) such that

Urer = Jel < LyllgSt™ — o). (109)

Moreover, the actor update magnitude is uniformly bounded: ||¢,(,f+1) — qﬁ,(,f) || < O(a;) (bounded
score and bounded advantage/TD signal under clipping/bounded costs). Therefore

E[Je+1 = Jel] < O(ar). (110)

Plugging (108)-(110) into (107) gives, for all ¢t € 7, we have
Eflesr1l] < (1= p)Elle]] + O(pmax) + O(ay). (111)

Iterating (111) over ¢ > 7x_1 + b and using p; < pmax yields

-1
Eller]] < (1= pmax)’ ™ VB[ leg,_ 4611 + Z (1= pma) ™7 (O(Pmax) + O(at))
u=tj_1+b

o —NTk-

< O(Pmax) +0 sup E ) + (1 - Pmax)t (7 1+b)E[|erk_1+b|]~ (112)
ue I, Pmax

Finally, by the mixing/burn-in bound (104) applied to the cost (bounded by cp,x), the bias in
E[e, ,+»] due to a non-stationary initial state contributes at most O(Cmipr ). Hence, uniformly
fort >t_1+b,

EWW—LHSO@mﬂ+OFW %)+o&hmﬂ. (13)

ue I Pmax

Since the baseline is updated on the fast timescale (in our algorithmic choices p; is of the same
order as f§;), we may replace pmax by Pmax in the ratio term up to constants, yielding the lemma’s
stated O(sup «/f) dependence.
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H.5 Step 2: tracking of the critic parameter w*)

Define the critic error
A2 w® - wy. (114)

From (101)-(102), we can rewrite the TD recursion as

wttD) — () _ iR (Ct —¢® 4 ¢(3t+1)TW(t) _ (ﬁ(st)Tw(t)) ¥(se)

=w" + B, ((5([) = )Y (se) = Y(se) (Y(se) =P (se41)) 7 W(t)) . (115)
Introduce the sample quantities
Ar 2 (se) (P(se) = Y(see) " and by 2 (@ =)y (s:), (116)

s0 (115) is w1 = w(®) 4 g, (be —Atw(t)). Subtract w},
mean quantities Ay, b}:

from both sides and add/subtract the
Apy1 = W(Hl) - W;‘H
= W(t) - W;( + ﬁt (bt _A[W(t)) + (W; - W;:_l)
= Ac+ B (b= b)) = (A = AW D) + B (6] = Apw ) + (w] = i)
=(I-BADA; + f ((bt —b}) - (A - A:)w<f>) +B (b} — Aiwi) +(w] —wiy))

~———
=0 by (98)

martingale + mixing bias
= (I = BrADA + Bre + (wy — wipy), (117)

where & £ (b, — b}) — (A; — A))w®). By (99), for f; < 1/||A;]|| (which holds for all sufficiently
large t, we have the operator norm bound

1T = BrALll < 1= Brda/2. (118)

First note ||i/(s)|| < 1and 0 < ¢; < cmay imply ||As]| < 2 and ||bs]| < |€®) —c¢;] < 6P| + cinax. Under
boundedness and the fact that () is a convex combination of bounded costs, we have |E(t) | < cmaxs
hence ||b;|| < 2cmax. Similarly [|b}|| < 2emax and ||Af|| < 2. Using these and lw®] < lwi Il + Al

11 < 11e = By + 1A, = A7l 1w
< Mbe = b1l + 1A = A1 (Ilwi 1l + 1A ) (119)

By the burn-in mixing bound (104) applied to the bounded functions defining A; and b, for all
b2 Tp_1 + b,

E[l|A; = A}II] + B[lIb; = (i = ey (s)ll] < O(Crmixp®). (120)

Moreover,

be— (e =)y (s) = (&9 = )y (se), (121)
50 ||by — (J; — c)¥(se) || < |6 = J;|. Combining with (113) yields

uel; Pu

% _ ay
E[lIb: = b} 111 < E[Ic") = J:|] + O(Cmixp?) < O(pmax) + O (sup —) +O0(Cmixp?).  (122)
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Substituting (120)-(122) into (119), and using that ||w}|| is uniformly bounded (a consequence of
I(A;)7!|| < 1/A4 and bounded ||b}]|), we obtain

||§t|| < O(pmax) +0 sup

uely ﬂu

) +0(Crixp”) + O (BLIA - Coiep?) . (123)

The last term is higher order once b = ©(ty;y) is chosen so that Cmipr is a small constant; we
absorb it into constants in big-O. As in (109), uniform mixing plus bounded score functions imply
that (A}, b}) are Lipschitz in ¢,,, and by the matrix inverse perturbation identity,

w(9) = AT($) 0" (¢) = Ilw(¢) = w' (¢l < Lullg — ¢’ (124)
for some L,, < oo depending only on (cmax, Aas Ciixs > Gr). Thus
Iy = will < O(ar). (125)
Taking norms in (117), applying (118), and then taking expectations, for ¢t > 7x_; + b,
E[llAsilll < (1 = Beda/2) E[IIAA] + BENEAN] + Elllwryy — will]

< (1= Brra/2) E[NAAN] + Br (O(pmax) +0 +0(a). (126)

sup %) + O(Cmipr)
u

uely

Using again that a; < f; - sup,,c 7, (au/Bu), we can rewrite (126) as

ElllAralll < (1 = Beda/2) ELIAN] + O(Prpmax) + O | fr sup % + O(BiCmixp?). (127)

ue Iy

Let fmax = sup,c 7, Pu- A standard discrete Grénwall argument for sequences of the form x;4; <
(1 - cf)x; + Pru yields (uniformly over t > 73_1 + b)

t—1
E[|A¢] £ O(Bmax) + O(pmax) + O (Sup + O(lexp ) +exp| -2 Z Bu |E ”Ark 1+b||]
u€ Iy ﬂu uU=tp_1+b

(128)

Finally, as in Appendix H.4, the burn-in/mixing lemma implies that the initialization error at time
Tr_1 + b contributes at most an additional O(Cyix pb) bias term in expectation, which we absorb.
Dropping the exponentially decaying term completes the desired bound for the critic.

H.6 Choosing the burn-in length b = ©(#yx)
Pick any constant ¢ € (0, 1) and set
b2 min{t>1: Cpixp’ < e} (129)
Then b = O(tpix(€)) = O(tmix) and the burn-in contribution becomes O(¢). Substituting this choice
into (113) and (128) yields the lemma statement:
E [w("’” - <n<’">>|] < O(pmue) + O i) +0( 5095, 5) + O(Cuiep), (130)

[l = G| < Onar) + O supue, 57) +0(Coe”). (131)
u
with constants depending only on (¢mayx, Amins Cmixs £) (and the implied uniform conditioning con-

stant A4).
O
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I Proof of Lemma3

Proor. We prove for a fixed-share gate under full-information losses ¢;(m) € [0,C]. We then
relate the bound to the post-projection distribution g, used for sampling.

1.1 Step 0: Setup and the switching-aware gate update

Let £ € [0,C]™ denote the loss vector at time t. Consider the fixed-share update on the simplex
with parameters: learning rate 7 > 0 and share parameter € (0, 1). Initialize w;(m) = 1/M for all
m € [M] and define p;(m) = w,(m)/Z?’il w; (j). Given ¢, define the exponentiated update

N . Wee1(m
41 (m) = pe(m) exp (=t (m) and pray(m) = et (132
% j=1 We1(J)
The fixed-share (switching-aware) distribution is then
. 1
pee1(m) = (1= a)prar(m) + o - i for m € [M]. (133)

This is the classical fixed-share Hedge algorithm (Herbster—-Warmuth), which competes with expert
sequences that switch a limited number of times.

For the present lemma, we first analyze the distribution generated by the switching-aware
update (133); denote it by g;(+) (to avoid overloading), and later relate it to g;(-).

1.2 Step 1: A standard upper bound on the log-partition potential
Define the log-partition (potential)

M
W, £ Z we(m) and @, 2 log W;. (134)

m=1

Using p;(m) = w;(m)/W; and the exponentiated update,

M M
Wisr = D" Wit (m) = D (1= @)prea(m) + @/M) - Wi, (135)

m=1 m=1

It is standard to analyze the intermediate normalization after exponentiation:

M
Zi 2 )" pu(m) exp(-nti(m)).
m=1

Then, log Z; is the one-step change of the potential for the pure Hedge update (before sharing). By
Hoeffding’s lemma (or the convexity of exp), since £ (m) € [0,C], we have

2(j2
log Z: = 10g Em-p, [exp(~nts(m)] < ~1Ep-p, [6:(m)] + . (136)
Summing (136) over t = 1,..., T yields the usual Hedge upper bound:
T (Hedge) 2
- C
> B lti(m)] s — 2 — 4+ T, (137)
=1 1 8
where Q(Tliidge) denotes the log-partition after T pure-Hedge exponentiated steps. Fixed-share

differs only in that it mixes p;; with the uniform distribution. The standard way to handle this is
to lower bound the total weight assigned to a comparator expert sequence under the fixed-share
dynamics, which we do next.

, Vol. 1, No. 1, Article . Publication date: January 2026.



1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

38 Ming Shi

1.3 Step 2: A lower bound on the weight of a comparator switching sequence

Let my.; = (my, ..., mr) be any expert sequence with at most S switches, i.e.,

T
S(myg) £ > 1{my #me g} <8, (138)
=2
For fixed-share, one can interpret p,(-) as the marginal of a Markov prior over expert indices
with switch probability a: stay with probability 1 — «, switch uniformly to one of M experts with
probability a. Under this interpretation, the (unnormalized) weight assigned to m;.1 after observing
losses is proportional to

T
Pr(myr) - exp (—n > a<mt)) , (139)
t=1
where
Pr(my) = - (1 @)/ 1 -Smn) (L) (140)

Consequently, the total normalizer (the total weight summed over all sequences) is at least the
weight of the single sequence m;.r, i.e.,

S(my.r) !
W 2 2 (- TS () exp(—ant(mt)), (14)
t=1

where WT(JFrSl) is the normalizer induced by the fixed-share recursion. Taking logs and using S(m;.7) <
S yields

logWT(ESl) >—logM—-(T—-1-S5)log N

T
1 M
—Slog — — t, . 142
— ~Slee g~ 2 (m) (142)

1.4 Step 3: Combine the upper and lower bounds to obtain switching regret

A standard fixed-share analysis (see Herbster-Warmuth) combines the one-step bound (136), which
upper bounds the evolution of the normalizer for exponentiated updates, and the lower bound (142),
which ensures the normalizer cannot be too small because it must include the comparator path.

Concretely, one obtains the following regret bound for the fixed-share prediction sequence g; (-)
generated by (133): for any comparator sequence my.r with S(my.7) < S,

logM+Slog%I+(T—1—S)log _1a C?
Z ngm)a(m) - Za(m» < el SETE)

t=1 m=1 n

Equation (143) is the standard fixed-share bound. Its proof is exactly the potential argument
summarized above, with the Markov-prior lower bound (141) playing the role of the “best expert”
lower bound in classical Hedge.

1.5 Step 4: Specialize to the piecewise-constant in-class selector

In Lemma 3, the comparator is the piecewise-constant in-class selector mi¢ = mIC for t € i, which

switches exactly St times: S (m 1) = St. Applying (143) with S = St gives

T M T 1
) los M+ Splog ™ + (T —1-S7)log - C?
Z gr(m)t,(m) — Zl’t(m?) <22 rlogy +( r)log - + UTT. (144)

t=1 m=1 t=1 n
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1.6 Step 5: Choose (a,n) and simplify

A convenient choice is o = % when S7 > 1if St = 0 take any small constant « and the bound

reduces to the standard Hedge bound). With this choice,

1 T-1
T-1-57)1 =(T-1-S1)log—— < S 145
( 7)log -— = ( T)OgT_l_ST—T» (145)
and
M M(T -1
Srlog — = Srlog (g) < Srlog(MT). (146)
(24 ST
Thus, (144) becomes
T M T
ien _ log M+ Srlog(MT) + S C?
SN grmte(m) = Y tr(mi) < BT BMT) + 51 . (147)
=1 m=1 =1 1
Choose
8 (logM + St log(MT) + ST)
= . 148
n \/ T (148)
Plugging into (147) yields
T M T .
SN gmt(m) = Y ti(mi) <0 (c Tlog M + CSy log(MT)) . (149)
t=1 m=1 =1

In the main text, it is common to suppress the additional log T factor with O(-) notation, in which
case (149) is reported as O (C Tlog M + CStlog M).

1.7 Step 6: From g; to the post-projection sampling distribution g;

In Algorithm 1, the distribution used to sample the expert is g;(-), obtained by projecting (or
modifying) g;(+) to enforce G; (Msafe) = Pmin. For arbitrary loss vectors, projection can only change
the expected loss by at most C times the total mass moved. In particular, for the common “raise
safe coordinate then renormalize” projection used in your paper, one can show for every ¢,

M M
Z gir(m)t;(m) < Z gr(m);(m) + Cpuin, (150)
m=1 m=1

because the projection increases the safe expert probability by at most pmin (if g¢ (Msafe) < Pmin)
and the loss range is [0, C]. Summing (150) over t = 1,..., T yields

T M T ) T M T )
DD Gmye(m) = > (m) < (Z D gi(m)ei(m) = " € (m ) +CpminT.  (151)
t=1 t=1

t=1 m=1 t=1 m=1
Combining (151) with (149) yields the post-projection bound

M

M)~

T
Gi(mt(m) = > £(mif) < 0 (c Tlog M + CSr log(MT)) + CpmnT.  (152)
t=1

t

Il
—-

m=1
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1.8 Conclusion

Ignoring the stability floor (or using O(-) notation to suppress log T), the fixed-share gate satisfies

ZTl i gr(m)t;(m) — ZT: & (m) <0 (C TlogM + CSr logM) , (153)

t=1 m=1 t=1

which is the claimed form in Lemma 3 (with the standard caveat discussed above regarding the
safety projection and the possible additional log T factor under explicit parameter choices).
]

J Proof of Lemma4
Proor. Recall that the regret Reg(T) = Cr(my.1) — Ci-, the cost Cr(my.7) = E Zthl @) (sp,a0) |,

and the cost C;. £ E I ¢ (st ab) |, where .1 is the (possibly history-dependent) algorithmic

policy sequence, and 7} = 7%(?*) is the regime-aware benchmark from (3).

J.1 Step 1: Insert the in-class regime-aware comparator

For each regime z, let the in-class best stationary policy (over the union of expert families) be
P XIS arg minneumgw]n("l) ](Z)(n) and Ji¢(z) = minneume[M]H(’") J(z) (”) Let mlC(z) be any
expert index achieving J*(z), and define the piecewise-constant selector m* = m;° = m'“(zy) for
t € Iy.

Define the (idealized) in-class regime-aware policy sequence 71 £ 7(#*) and its finite-horizon
cost CiTC 2 E thl c(zf)(sitc, aitc)], where ai¢ ~ ez (] si€) and sitil ~ PEI(| si¢, al). Then, by

adding and subtracting CiT", we have

Reg(T) = (CT(”I:T) - C§9) + (C§9 - C;) . (154)
= Regalgﬂic(T) = REgica*(T)

J.2 Step 2: Bound the approximation gap Reg; _, (T)
By definition of Approx,, in (24), we have

J(z) = JP () < Approx,,, forallz € Z. (155)

If each regime were held fixed forever and both chains were initialized in stationarity, then the
per-step gap between 7'>?) and 7*(*) would be exactly J*(z) — J*) (#**)) < Approx,,. Over a
finite horizon with switching, one must also account for the segment burn-in bias after each switch.
We isolate this bias as Reg;.,,(T) (defined below).

Concretely, fix a burn-in length b (e.g., b = tyix(€) from Definition 2) and decompose each
segment Ji = {7x_1,..., 7% — 1} into its burn-in part Ikbum 2t 1,...,min{rg_1 +b -1, — 1}}
and its post-burn-in part Ik“at 2 I\ Ikb“m. Using bounded costs (0 < ¢*) < cpay), we can always
upper bound the burn-in contribution by cpay per step and write

St+1

Regswitch(T) 2 Cmax Z |Ikburn| < Cmax (ST + 1)b. (156)
k=1

Then, on the post-burn-in portions 7, kStat, Lemma 1 justifies replacing time averages by steady-state
averages up to an O(e€) bias; absorbing these O(eT) terms into (156) (by choosing € as a fixed
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constant) yields
Reg;._,,(T) = Cf — Cy < T - Approx,, + Regyiien(T)- (157)

J.3  Step 3: Decompose Reg,,_,;.(T) into gate-selection and within-expert learning

At each time ¢, Algorithm 1 produces (after safety projection) a sampling distribution g; (- | s;) over
experts, samples m; ~ g;(- | s;), then samples a; ~ ﬂ;(t) (- | s¢). Define the conditional expected

one-step cost if expert m were used at time ¢ (given the realized s; and the current parameters):

¢/(m) = E [ @) (51, a)

St 21,4 (z) ( I St)] (158)

Then, the algorithm’s conditional expected one-step cost equals ;,, §:(m | s;)¢;(m), so

Regyigie(T) _Z [th(mlst)ct(m)] iE[Et(mif)] (159)

=1 t=1
T . T . .
+ Z E[Et(mlf)] - Z E[C(Z’) (s, a‘tc)] ) (160)
t=1 t=1
= Regac(T)

The last bracket is exactly a within-expert learning/modeling term. It measures how far the cur-
(mif)
®
m‘tc
comparator 7'(?*). This is the term denoted Reg,(T) in the lemma statement. It is controlled

by Lemma 2 and standard average-cost policy-gradient arguments.
It remains to upper bound the first difference in (159), which is purely an expert-selection error:

rent parameterized policy 7 (and its induced trajectory) is from the ideal in-class stationary

T
2UE| D gim | soem) - e (m)|. (161)

t=1

J.4 Step 4: Relate expert-selection cost to the gate surrogate loss

By construction of the gate, we assume a calibration (or domination) relationship between instanta-
neous selection suboptimality and the surrogate gate loss £;(m) € [0, C]. Specifically, assume there
exists k1 > 1 and an additive bias Approx;, > 0 such that for all t and all distributions g € Ay,

[Z q(m)é;(m) — ¢, (m! )] < KIE[ Z q(m)t;(m) — £(mi) | + Approxy,. (162)

Heuristically, Approx,, captures the fact that TD-residual losses are computed using approximate
differential values, so the surrogate need not be perfectly aligned with true cost. In realizable
settings, Approx,, can be taken as 0. Apply (162) with g = g;(- | s¢) and sum over t:

Z [th(mlst)ct(m) ct(mt)]

t=1

( E[th(m | st)t’t(m)] ZT:]E t’t(mt ) + T - Approxy,
=1 t=1

= KlReggate(T) + T - Approxy, (163)
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where Reg,, . (T) is exactly as defined in the lemma statement (note £ (mi€) is deterministic given
the losses).
Combining (163) with (159) yields

Reg,isic(T) < k1Regyy (T) + Regyo(T) + T - Approxy,. (164)
J.5 Step 5: Combine the pieces
Plugging (157) and (164) into (154) gives
Reg(T) < KiRegyy (T) + Reguc (T) + Regyyiyen (T) + T - Approx,, + T - Approxy, (165)

which is exactly (32).

K Proof of Theorem 5

Proor. We prove (34) by combining the three structural lemmas proved in the appendix: (i)
the gate regret bound (Lemma 3), (ii) the critic/baseline tracking bound within a regime segment
(Lemma 2), and (iii) the regret decomposition (Lemma 4). We also bound the switching transient
term Reg ;. (T) using the per-regime mixing property (Definition 2).

K.1 Step 1: Decomposition

By Lemma 4, under bounded costs and the calibration relation defining k;,
Reg(T) < xiRegyy (T) + Regyc(T) + Regyyiyen (T) + T - Approx,, + T - Approx,. (166)
We now bound the three regret components Regy,. (T), Regac(T), and Regyis, (T).

K.2 Step 2: Gate regret term
In the full-information variant, the gate observes bounded losses ¢;(m) € [0, C] for all m. Apply-
ing Lemma 3 yields

Reg,i(T) = ii (m)e,(m) — th(m ) < co(c Tlog M + CSy 1ogM), (167)

t=1 m= t=1

—_

for some absolute constant ¢y > 0 (e.g., cp = O(1) depending on the exact fixed-share/Hedge
variant). Multiplying by x; gives

KlReggate(T) < O(K1C Tlog M + k1CSt log M). (168)

K.3 Step 3: Switching transient term

We upper bound the transient cost incurred immediately after each regime switch, before the state
distribution re-mixes within the new regime and the critic/baseline recenters.

Fix a constant accuracy level € € (0,1/4] and let b £ tx(€) be the corresponding uniform
mixing time (from Definition 2 plus the definition of tpix (€)). Partition time into the St + 1 segments
{Ik}ST+1 with switch times {7} }. For each segment k, define its first b steps as the “burn-in” subset

Ihums fn n 41, min{zey +b— 1,7 — 1)) (169)
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By bounded costs (0 < ¢?) < cpay), the maximal per-step contribution to regret in these burn-in
steps is at most cmay. Therefore, the total burn-in contribution across all segments is bounded by

St+1

Regswitch(T) < Cmax Z |]-kburn| < cmax(ST + 1) b= O(CmaxST tmix(e)): (170)
k=1

where we used b = tpix(€) and absorbed the additive (+1) into the big-O. Taking € as a fixed
constant (e.g., € = 1/4) yields the stated scaling

Regswitch(T) < O(cmaxST tmix), (171)
where tyx is shorthand for ty,(1/4).

K.4 Step 4: Within-expert learning term Reg,(T)
By definition in Lemma 4, Reg,-(T) collects the loss due to imperfect advantage surrogates and
slow actor updates. We bound it by a standard “stochastic approximation under Markov noise”

argument, using Lemma 2 to control the bias of the TD residual (St(m) (as an advantage surrogate)
within each stationary regime segment.
Fix a segment Z; with regime z, and consider the in-class comparator expert m;’ on this

A

segment. Let m = m}f for brevity. For the average-cost actor-critic update in Algorithm 1, the
actor update for expert m uses the score V4 log 7[4(;':) (a¢ | s:) multiplied by the TD residual St(m).
Under Assumption 1, we have a uniform score bound

95, 1ogn;j:>(a |9)|| < Ga. (172)

Moreover, under Assumption 2 and Lemma 2, after burn-in b = ©(#pix) within the segment, the
critic/baseline tracking errors satisfy, for all t € 7 witht > 7p_; + b,

E [|e<m’” — J) (n"::m] < ek (173)
B [Iw? = w & ()| < b (174)
where (matching Lemma 2) one can take
ek = O(prax) + O(mas) + O( sup Z4) + O(Csep?), (175)
uely ﬁu
Euk = OBnax) +O( sup 24) + O(Crixp). (176)
uely Fu

These tracking errors imply that the TD residual 5t(m) is an approximately centered advantage
surrogate within the segment. Its conditional expectation differs from the ideal average-cost
advantage by at most a bias proportional to & + &,, k. Because the actor update is scaled by step
size a;, the cumulative performance loss contributed by this bias over the segment is bounded by

> ws||biasin o™ - [V, log 7™ (@ [soll| < Galerk +Ewp) Dy (177)
teli:t>1_1+b tely

In addition, the martingale (noise) part of the actor update contributes the usual }}, @ term.
Concretely, because |5t(m)| < O(emax) + O(]|wm|l) and the score is bounded by G, one obtains

Z afE[H(S;m)Vq;m log n;:)(at Isoll?] < Z o? (178)

tely telx
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2108 for some finite ¢; depending only on (cyax, G) and the projection radius for (wp,). Summing (177)
2109 and (178) over all segments and using >y >;c 7, @ = Zthl aand Yy e af = Zthl a? yields
2110

T T Sr+1

2111

1o Regnc(T) < ¢z Z a + c3 Z af +cy4 Z (Ecp + Ewik) Z ay, (179)
=1 =1 k=1 el

2113

2114 for constants ¢y, c3, ¢4 depending only on boundedness parameters.

2115 Finally, choose standard diminishing step sizes &, = ar/Vt:

2116 T T

a7 Z a; = O(NT) and Z a? =0(logT), (180)

2118 — —

2119

.50 and under two-timescale separation (sup,, I Y /Py — 0 and Pax, Pmax — 0), the tracking-error

s121  factors &, &,k are o(1) (or can be treated as constants absorbed into (5(-) at finite T). There-
2122 fore, (179) gives the claimed sublinear rate

2123 ~
2124 Reg,c(T) < O(VT), (181)

2125 where O(-) hides logarithmic factors (from ), #?) and the constant tracking-error terms from Lemma 2.

This matches the O(VT) term in (34).

2126
2127

128 K.5 Step 5: Combine all bounds

2129
130 Substitute (168), (171), and (181) into (166):

2131

Reg(T) < O(K1C TlogM + k1CSt logM) + é(ﬁ) + O(cmaxSttmix) + T(Approx,, + Approxy),
(182)

2132
2133
2134 which is exactly (34).

2135

2136 K.6 Vanishing average regret
2137

Divide both sides by T. If St = o(T) and Approx,, + Approxy, = o(1), then each term on the right

138 divided by T converges to 0:
2139
2140 VT log M SrlogM OWT STtmi
2141 8 -0, 2= - 0, (VD) —o0, X, (183)
T T T T
iz hence Reg(T)/T — 0. This completes the proof.
O
2144
‘L Proof of Theorem 6
2146
o147 Proor. We use a standard Foster-Lyapunov drift argument.
;iz L.1 Step 1: Drift inequality ensured by the safety projection

,150 By construction of the safety projection in Algorithm 1, the post-projection sampling distribution
4,157 satisfies

21z Gt (Mafe) = Prmin > 0, for all t. (184)
2153
2154 For the queueing instantiations (and more generally, whenever a stabilizing baseline policy exists),
2155 we assume the following baseline drift property: there exist constants B < oo and € > 0 such that, if
2156
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the stabilizing expert mgy, is selected with probability at least pni, at every time, then the induced

queueing process satisfies the one-step conditional Lyapunov drift bound

E [L(Qt+1) — L(Q:) | Qr] < B~ €l|Q¢ll1, forallt,

(185)

with L(Q) = %||Q||§ Thus, under the stated condition §; (Msafe) = Pmin, inequality (185) holds.

L.2 Step 2: Unconditional drift and telescoping
Taking total expectation of (185) and using the tower property yields, for every ¢,

E[L(Qr+1)] - E [L(Q)] =E [E [L(Qr+1) — L(Qs) | Q:]]
< B-€E[lIQlh].

Summing (186) over t = 1,2,..., T gives a telescoping sum:

T
E [L(Qr+1)] —E[L(Q1)] < BT — € > E[||Q:l1]
t=1

Since L(+) > 0, we have E[L(Qr+1)] = 0, and therefore

T
e Y E[IQ:Ii] < BT +E[L(Q)].

=1
Divide both sides by Te:
T
< B ELL(QV]
= D EIIQ < 2 + T2
= € eT
E[L(Ql)]

Taking lim sup;_,, on both sides and using — 0 yields

lim sup = ZE[thn

T—o0 =1

This is exactly the desired bound.

L.3 Step 3: Strong stability

Under the standard definition of strong stability (finite time-average expected backlog),

lim sup ZE 1041111 < o,

T—oo

the bound above implies that the queue component {Q,} is strongly stable.
This completes the proof.
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