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Mixture-of-Experts Actor-Critic for Regime-Switching MDPs:
Impossibility Results and Performance Guarantees
MING SHI, University at Buffalo (SUNY), USA

Performance-critical computer and communication systems routinely traverse heterogeneous operating

regimes, including light/heavy traffic, congestion episodes, workload phase shifts, mobility-induced channel

changes, and benign/adversarial operation. This regime heterogeneity induces structured nonstationarity:

the Markov decision process (MDP) governing the system can switch in its transition dynamics and/or cost

structure. We show that this phenomenon is not merely a modeling nuisance, but a structural obstacle for

monolithic stationary actor-critic methods when objectives couple efficiency with systems metrics such as

stability, delay, and resource costs. We formulate regime-switching MDPs (RS-MDPs) with an unobserved,

piecewise-constant regime process and evaluate performance against a regime-aware benchmark that applies

the per-regime optimal stationary policy. We then propose a regime-aware mixture-of-experts actor-critic (RA-
MoE-AC) algorithm that combines expert policies, an online gating mechanism for regime-adaptive selection,

and a lightweight safety projection that enforces minimum use of a stabilizing expert. Our contributions are

twofold. First, we prove impossibility theorems showing that any stationary policy can suffer a non-vanishing

optimality gap against the regime-aware benchmark, and that regime mismatch can destroy queue stability

even when each regime is individually stabilizable. Second, for RA-MoE-AC we derive switching-aware

performance bounds whose leading terms scale as 𝑂̃ (
√︁
𝑇 log𝑀 +𝑆𝑇 log𝑀 +𝑆𝑇 𝑡mix), plus approximation terms

that decrease as the expert class is enriched (with larger𝑀), and establish strong stability in queueing. Here,

𝑇 is the horizon, 𝑆𝑇 the number of regime switches, and 𝑡mix the per-regime mixing time.
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1 Introduction
Modern networked systems, e.g., wireless access networks, edge/cloud platforms, and cyber-physical

infrastructures, are usually nonstationary [12, 14, 27, 37]. They operate under shifting traffic

intensities, changing connectivity and interference, evolving workloadmixes, time-varying resource

prices, and occasional failures or adversarial disruptions. These effects are often structured. For
certain periods, the system behaves according to a relatively stable operating regime, and then

switches to a different mode in which the dominant bottlenecks, dynamics, and costs change.

We study the fundamental algorithmic and theoretical consequences of such regime switching
through a latent mode variable 𝑧𝑡 that selects among a finite set of stationary/static Markov decision

processes (MDPs). This abstraction captures canonical phenomena in systems, e.g.,

• Queueing and scheduling. In wireless scheduling, routing, and cross-layer control, policies that

are efficient in light traffic can be persistently misaligned in heavy traffic, where stability margins
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2 Ming Shi

and backlog growth dominate [17, 25, 30, 38]. Mobility and interference can also fundamentally

shift the effective service process, changing which users are bottlenecks.

• Edge/cloud and data centers. Workload phases (e.g., diurnal patterns, flash crowds, and workload-

mix shifts) can abruptly change resource bottlenecks, (e.g., CPU, network, and memory) and the

right provisioning logic [7, 18].

• Cyber-physical and security-aware systems. Systems may switch between benign operation,

partial failures, and adversarial disturbance modes, changing both transition laws and costs (e.g.,

penalties for risk exposure or safety violations) [9, 27].

A central implication is immediate: when 𝑧𝑡 changes, the best control policy can change with it.

Our goal is close to a best-of-many-worlds guarantee where the active “world” (regime) itself can

change over time, rather than the classic best-of-both-worlds paradigm [32, 43].

1.1 Why Regime Switching Breaks the Stationary Actor-Critic Method
Actor-critic methods are attractive in large-scale systems because they are online, scalable, and

compatible with function approximation [8, 22, 23, 39]. However, standard analyses typically assume

a single stationary MDP. Under regime switching, three core objects move simultaneously: (i) the

transition kernel (hence the stationary occupancy measure), (ii) the cost landscape, and (iii) the

critic fixed point. As a result, the critic becomes a moving target, advantage surrogates become

biased after switches, and actor updates can chase transient artifacts.

A tempting counter-argument is that a sufficiently expressive parameterization (e.g., using deep

learning and/or neural networks [6, 42]) should learn a single policy that “works everywhere.” Our

results show that this intuition is not just practically fragile but can be theoretically false. Even in

benign dynamics, a single stationary policy may incur a non-vanishing performance gap relative

to a regime-aware benchmark. Worse, in queueing systems, sustained regime mismatch creates a

persistent service deficit, which leads to linear backlog growth and loss of stability.

To characterize systems-level behavior, e.g., post-switch transients, stability regions, and back-

log/delay scaling, we adopt a regime-aware and stability-centric evaluation lens. On the efficiency
side, we compete with a regime-aware benchmark that applies the per-regime optimal stationary

policy on each segment, and we ask how the excess cost scales with the number of switches and the

per-regime mixing time. On the safety side, for queueing instantiations we require strong stability,

and we explicitly enforce a Lyapunov-drift safeguard rather than relying on stability as an emergent

byproduct of learning. This emphasis is also dictated by our lower bounds in Section 4. That is,

without an explicit regime-adaptive mechanism, both tracking efficiency and stability can fail.

1.2 Regime-Switching Markov Decision Processes
Wemodel the system as a regime-switching MDP with a finite family of stationaryMDPs {M (𝑧 ) }𝑧∈Z .
A latent piecewise-constant process {𝑧𝑡 } selects the active regime at time 𝑡 . The agent does not

observe 𝑧𝑡 and the switching times. Our primary performance metric is tracking regret against the
regime-aware benchmark that applies the per-regime optimal stationary policy on each segment.

There are several new challenges under regime switching. First, regime heterogeneity can

create structural (policy-class) mismatch. Different regimes may induce conflicting optima, e.g., the

optimal action flips on a frequently visited state, so any single stationary policy must compromise

and can be persistently suboptimal. Second, the regime is latent, so fast post-switch inference is

unavoidable. The agent must identify the active mode from the feedback and reallocate control

quickly after switches. Third, critic learning becomes nonstationary. The relevant average-cost

Bellman/Poisson fixed point (and hence advantage surrogates) changes across regimes, so critics

must track segment-wise targets. Otherwise, temporal-difference (TD) bias propagates into the
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Mixture-of-Experts Actor-Critic for Regime-Switching MDPs 3

actor updates. Fourth, in queueing systems, inference and exploration errors are state-amplifying.

Sustained mis-selection yields a positive service deficit (negative drift fails), which causes backlog

to grow even when each regime is individually stabilizable. Together, these challenges motivate

a agent that represents multiple regime-specialized behaviors, performs online mode selection,

controls post-switch transients via timescale separation, and enforces a stability floor in queueing.

1.3 Main Contributions and Results
The main contributions and results in this paper are summarized as follows.

• Impossibility results (Section 4).We establish two complementary lower bounds that formalize

when regime adaptivity is structurally necessary. First, we construct an RS-MDP with regime-

independent dynamics and conflicting per-regime optimal actions, for which every stationary

policy incurs linear tracking regret Reg(𝑇 ) = Ω(𝑇 ) against the regime-aware benchmark, and

this persists even under slow regime-switching with an arbitrary minimum segment length 𝐿min

(Section 4.1). Second, we show that in queueing systems regime mismatch can destroy stability:

no fixed randomized priority rule stabilizes two regimes that swap the bottleneck queue, and

within a long “bad” segment the backlog grows at least linearly in 𝐿min (Section 4.2). Together,

these results explain why regime adaptivity is required for both efficiency and safety.

• Algorithm: RA-MoE-AC (see discussion above and Section 5). Our new algorithm, Regime-
AwareMixture-of-Experts Actor-Critic (RA-MoE-AC), is designed around four coupledmechanisms

(see Algorithm 1). First, we adopt an MoE policy class with 𝑀 expert actors so that different

experts can represent regime-specialized behaviors. This avoids the single-policy limitation

highlighted by Impossibility I and reduces the challenge to online mode selection. Second, we

train a state-dependent gate using a TD-residual-based mismatch signal. Within a fixed regime,

an expert whose critic is approximately Bellman-consistent exhibits small centered TD residuals,

whereas after a regime switch the previously well-matched expert typically produces systematic

residual spikes. The gate interprets the resulting bounded residual losses as online feedback and

reallocates probability mass after switches. Third, we maintain per-expert critics and enforce

timescale separation (critic fastest, gate intermediate, actor slow), so that value surrogates track

segment-wise fixed points after a short burn-in while limiting the propagation of transient critic

bias into actor updates. Finally, because Impossibility II shows that inference errors can be unsafe

in queueing systems, we enforce an explicit stability floor via a safety projection that guarantees

a minimum selection probability 𝑝min for a stabilizing baseline policy embedded as a dedicated

expert. This converts stability from an emergent property into an enforced constraint and enables

tracking-performance analysis within a guaranteed safe envelope.

• Achievable performance guarantees (Section 6). Our analysis chain starts from per-regime

geometric mixing, then establishes critic/baseline tracking and switching-aware gate regret, and

culminates in themain tracking theorem, yielding an explicit decomposition of the tracking regret.

In particular, the bound separates as follows: (i) expert-selection overhead𝑂 (
√︁
𝑇 log𝑀+𝑆𝑇 log𝑀),

(ii) within-segment actor-critic learning terms (sublinear in 𝑇 under timescale separation), (iii)

post-switch transients𝑂 (𝑆𝑇 𝑡mix), and (iv) irreducible approximation errors Approx𝜋 + Approx𝑉 .

Here 𝑇 is the horizon, 𝑀 the number of experts, 𝑆𝑇 the number of regime switches, 𝑡mix the

per-regime mixing time, and Approx𝜋 / Approx𝑉 denote policy/value approximation errors.

Consequently, if 𝑆𝑇 = 𝑜 (𝑇 ) and approximation errors vanish, then Reg(𝑇 )/𝑇 → 0.

• Stability/backlog guarantees via safety projection (Theorem 6). Under a standard baseline

Lyapunov drift condition for the stabilizing expert, the safety projection yields strong stability and
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4 Ming Shi

an explicit backlog bound, i.e., lim sup𝑇→∞
1

𝑇

∑𝑇
𝑡=1

E∥𝑄𝑡 ∥1 ≤ 𝐵/𝜖 . This modular result provides

a regime-agnostic stability envelope within which the tracking guarantees operate.

2 Related work
We review adjacent lines of work and clarify what remains unaddressed in our setting.

Learning for networks and systems. Large-scale resource-management problems in networking

and computing are routinely implemented atop cluster and control substrates such as Mesos and

Borg [19, 41], which has motivated a wave of learning-based controllers that optimize end-to-end

performance objectives directly from operational traces (e.g., deep reinforcement learning (RL) for

cluster management and adaptive bitrate (ABR) control [28, 29]). Their evaluations are typically

trace-driven and their analyses rarely provide stability-centric, switching-aware, and robustness

guarantees against regime mismatch. In parallel, rigorous robustness and optimization guarantees

have been developed, e.g., via Lyapunov/drift or performance guarantees under uncertainty, for

related operational settings (e.g., data-center demand response and workload shifting) [11, 26]. Our

work is closest in spirit to this latter lens, but targets the regime-switching RL setting.

Regret-optimal RL in stationary MDPs. A large theory literature studies regret/sample-complexity

guarantees for stationary MDPs, mainly in episodic or communicating settings [2, 3, 22, 36]. These

results are foundational, but do not directly model piecewise-stationary regime switching, latent

regime inference, or stability constraints that amplify transient errors.

Nonstationary and adversarial bandits/MDPs. Nonstationarity has been studied under variation

budgets, change-point models, and piecewise-stationary assumptions, predominantly in bandits

and partially in MDPs [5, 10, 16, 35]. These formulations often compete with a best-in-hindsight

stationary comparator or assume smoothly varying dynamics. In contrast, our benchmark is

explicitly regime-aware (piecewise stationary), and the analysis must couple learning performance

to stability metrics (backlog growth and strong stability), which leads to qualitatively different

failure modes (Impossibility II) and motivates explicit stability safeguards.

Latent-regime models and latent-state RL. Regime-switching can be viewed as a latent-variable

control problem. Related works include hidden-parameter or latent-task MDPs, where a latent

variable indexes system modes and the learner must adapt online [13, 24]. This literature typi-

cally emphasizes transfer efficiency, whereas our focus is on switching-aware tracking against a

regime-aware stationary benchmark together with stability guarantees. Our MoE gate provides

a lightweight online mechanism for latent-mode selection that is directly tied to performance

certificates (TD-residual-based losses) and to stability enforcement (safe-expert floor).

Quick change detection (QCD) and “detect-then-control.” A classical approach to nonstationarity is

to detect distributional changes and then restart or switch agents. Quickest change detection offers

principled detectors such as CUSUM and Shiryaev-type procedures [4, 33, 40]. These tools provide

strong detection-delay/false-alarm tradeoffs, but do not by themselves resolve how to maintain

stability during detection uncertainty, or how to integrate detection signals with continuous control

updates. Our gating mechanism can be interpreted as an online, control-coupled “soft” alternative,

where TD residuals act as mismatch signals that continuously reweight experts, and the safety

projection ensures stability even when the mismatch signal is noisy.

Robustness and competitiveness with imperfect predictions. A parallel systems tradition studies

robustness via competitive analysis and robustness-consistency tradeoffs when algorithms leverage

imperfect forecasts of demand, prices, or workloads [11, 26]. These frameworks typically benchmark

against an offline clairvoyant optimum via competitive ratio and aim for graceful degradation as

prediction quality deteriorates. Our regime-switching setting differs in two fundamental respects.

First, uncertainty is a latent operating mode that changes the identity of the optimal policy, rather
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than a forecast of future inputs. Second, the dominant constraint is stability, where mis-control

induces state-amplifying backlog growth and cannot be smoothed by time-averaging.

Mixture-of-experts and modular policies. MoE architectures are a standard mechanism for repre-

senting heterogeneous behaviors and enabling conditional computation [15, 21, 34]. Relatedly, mod-

ular and compositional policies have shown strong empirical effectiveness in RL [1, 20]. However,

existing theory does not target tracking a regime-aware stationary benchmark under piecewise-

constant switching, while simultaneously enforcing queue stability guarantees. In our work, MoE is

a structural requirement dictated by our impossibility results, i.e., when regimes induce conflicting

optima on frequently visited states, any single stationary policy suffers a non-vanishing gap.

Queueing control, stability, and drift-based optimization. MaxWeight and related Lyapunov-drift

policies are stability-optimal for broad classes of queueing networks under stationary primitives [17,

38]. The drift-plus-penalty framework further unifies stability and long-run cost optimization under

stationary randomness [31], and cross-layer control connects these ideas to wireless systems [17].

Our setting departs from this classical regime, since arrivals/service statistics and/or cost tradeoffs

switch across latent operating regimes.

3 Problem Formulation
This section formalizes the regime-switching Markov decision process (RS-MDP) studied in this

paper. Concretely, the system evolves according to one of 𝑍 regimes (operating modes), where

each regime 𝑧 ∈ {1, . . . , 𝑍 } is associated with its own stationary MDP M (𝑧 )
. This regime ab-

straction captures common systems phenomena, e.g., workload phase changes in data centers,

mobility/interference shifts in wireless networks, and time-varying resource prices or policy con-

straints in provisioning. It is also sufficiently structured to enable switching-aware performance

guarantees, and stability guarantees for our queueing instantiations. For the convenience of the

reader, Table 2 at the beginning of the appendix summarizes the key notation.

3.1 Regime-Switching MDP (RS-MDP)
We consider an agent interacting with a system over discrete time slots 𝑡 = 1, 2, . . . ,𝑇 . At each

time 𝑡 , the system is governed by a latent regime 𝑧𝑡 , which is not revealed to the agent. The agent

observes the current state 𝑠𝑡 , selects an action 𝑎𝑡 , then incurs an instantaneous cost and the system

transitions to a next state 𝑠𝑡+1. Specifically,

• 𝑠𝑡 ∈ S denotes the system state (e.g., queue lengths, channel state, server state, workload type);

• 𝑎𝑡 ∈ A denotes the agent’s action (e.g., which queue/user to serve, how much resource to

allocate);

• 𝑧𝑡 ∈ Z ≜ {1, 2, . . . , 𝑍 } denotes the latent operating mode (regime) of the environment.

The agent does not observe 𝑧𝑡 or the switching times of the regime process {𝑧𝑡 }. Instead, it only
observes the realized state-action trajectory (and the instantaneous cost defined below). This

modeling choice reflects many systems in which the root cause of a mode change (e.g., interference

pattern, workload phase, or adversarial activity) is not explicitly revealed at decision time, which

motivates regime-adaptive policies utilizing mixture-of-experts with online gating.

Per-regime stationary MDP. For each regime 𝑧 ∈ Z, we define a stationary MDP M (𝑧 ) ≜
(S,A, 𝑃 (𝑧 ) , 𝑐 (𝑧 ) ), where:

• 𝑃 (𝑧 ) : S × A → Δ(S) is the transition kernel under regime 𝑧, where Δ(S) denotes the set of
probability distributions over S. In particular, 𝑃 (𝑧 ) (· | 𝑠, 𝑎) specifies the distribution of the next

state given a state-action pair (𝑠, 𝑎).
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6 Ming Shi

• 𝑐 (𝑧 ) : S × A → [0, 𝑐max] is the instantaneous cost under regime 𝑧, i.e., the cost incurred by

taking action 𝑎 in state 𝑠 , where 𝑐max > 0 is a known uniform upper bound (w.l.o.g., bounded

costs can be rescaled to [0, 1]).
Intuitively,M (𝑧 )

describes how the system behaves if it were to remain in regime 𝑧 over a time

window. At time 𝑡 , conditioned on 𝑧𝑡 = 𝑧, the agent incurs cost 𝑐𝑡 = 𝑐 (𝑧 ) (𝑠𝑡 , 𝑎𝑡 ), and the next

state is drawn as 𝑠𝑡+1 ∼ 𝑃 (𝑧 ) (· | 𝑠𝑡 , 𝑎𝑡 ). Thus, the nonstationarity in our model arises from the

switching of the latent regime process {𝑧𝑡 }, which selects which stationary MDPM (𝑧 )
governs

the system at each time. The regime variable 𝑧𝑡 can affect the system in two systems-relevant

ways: (i) switching dynamics, where transition kernel 𝑃 (𝑧 ) changes across regimes (e.g., different

channel/workload/failure statistics); and/or (ii) switching objectives, where instantaneous cost

𝑐 (𝑧 ) changes across regimes (e.g., energy price/carbon intensity or service-level agreement (SLA)

weights).

Regime switching model. We model {𝑧𝑡 } as piecewise constant with finitely many switches up to

horizon𝑇 . Specifically, there exist switch times 1 = 𝜏0 < 𝜏1 < · · · < 𝜏𝑆𝑇 ≤ 𝑇 and we set 𝜏𝑆𝑇 +1 ≜ 𝑇 +1,

such that 𝑧𝑡 is constant on each segment I𝑘 ≜ {𝜏𝑘−1, . . . , 𝜏𝑘 − 1}, 𝑘 = 1, . . . , 𝑆𝑇 + 1. We denote by

𝑆𝑇 the number of switches and by 𝐿min ≜ min𝑘∈{1,...,𝑆𝑇 +1} (𝜏𝑘 − 𝜏𝑘−1) the minimum segment length.

3.2 Performance Metric
This subsection defines the performance metric. We first define finite-horizon (time-𝑇 ) costs for any

policy, and then define infinite-horizon (steady-state) average costs under a fixed regime, which

serve to define the per-regime optimal stationary benchmark.

Finite-horizon cumulative cost and average cost. Given a (possibly history-dependent) policy 𝜋

over horizon 𝑇 (denoted 𝜋 ≜ 𝜋1:𝑇 ), let {(𝑠𝜋𝑡 , 𝑎𝜋𝑡 )}𝑇𝑡=1
denote the state-action trajectory generated by

𝜋 interacting with the regime-switching environment. Define the finite-horizon cumulative cost

𝐶𝑇 (𝜋) ≜ E𝜋
[∑︁𝑇

𝑡=1

𝑐 (𝑧𝑡 )
(
𝑠𝜋𝑡 , 𝑎

𝜋
𝑡

) ]
, (1)

and the corresponding finite-horizon average cost𝑉𝑇 (𝜋) ≜ 1

𝑇
𝐶𝑇 (𝜋). The expectation E𝜋 [·] is taken

with respect to the randomness of the regime sequence {𝑧𝑡 }, the controlled state transitions under

{𝑃 (𝑧𝑡 ) }, and the policy’s (possibly randomized) action selection.

Infinite-horizon average cost under a fixed regime. For any stationary randomized policy 𝜋 ∈ Πstat

and fixed regime 𝑧 ∈ Z, define its steady-state infinite-horizon average cost

𝐽 (𝑧 ) (𝜋) ≜ lim sup𝑁→∞
1

𝑁
E𝑃 (𝑧) ,𝜋

[
𝑁∑︁
𝑡=1

𝑐 (𝑧 ) (𝑠𝑡 , 𝑎𝑡 )
]
, (2)

where the regime is held fixed at 𝑧 for all time (and the expectation is with respect to the trajectory

induced by 𝜋 under 𝑃 (𝑧 ) ). The lim sup is used for generality, since the limit need not exist without

additional ergodicity or unichain assumptions. Then, for each regime 𝑧 ∈ Z, define a per-regime

optimal stationary policy (breaking ties arbitrarily) by

𝜋∗,(𝑧 ) ∈ arg min𝜋∈Πstat
𝐽 (𝑧 ) (𝜋). (3)

Regime-aware tracking regret. Since the environment can switch regimes over time, a natural com-

parator is the regime-aware (nonstationary) benchmark policy 𝜋∗𝑡 (· | 𝑠) ≜ 𝜋∗,(𝑧𝑡 ) (· | 𝑠), which ap-

plies the regime-optimal stationary policy for the currently active regime. Let {(𝑠𝜋∗𝑡 , 𝑎𝜋
∗

𝑡 )}𝑇𝑡=1
be the

trajectory induced by {𝜋∗𝑡 }. Define the benchmark cumulative cost𝐶∗
𝑇
≜ E𝜋∗

[∑𝑇
𝑡=1
𝑐 (𝑧𝑡 )

(
𝑠𝜋
∗

𝑡 , 𝑎
𝜋∗
𝑡

) ]
,
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Mixture-of-Experts Actor-Critic for Regime-Switching MDPs 7

and the cumulative tracking regret

Reg(𝑇 ) ≜ 𝐶𝑇 (𝜋) −𝐶∗𝑇 . (4)

We also report the average (per-step) regret Reg(𝑇 )/𝑇 , which is directly comparable to the finite-

horizon average cost 𝑉𝑇 (𝜋). The metric (4) evaluates how well an online agent tracks the best

stationary behavior for each regime and is the standard benchmark for obtaining switching-aware

bounds that scale with the number of regime changes.

3.3 Policy Class: Mixture-of-Experts Actor-Critic
We now specify the parametric policy class considered in this paper. The key idea is to represent

regime-dependent behavior via a mixture-of-experts (MoE), i.e., different experts specialize to

different operating modes, while a gating network adaptively selects experts online based on the

observed state.

Actor and mixture policy. We consider a mixture policy with 𝑀 experts. Let 𝜋
(𝑚)
𝜙𝑚
(· | 𝑠) be the

𝑚-th expert policy parameterized by 𝜙𝑚 and denote 𝜙 ≜ (𝜙1, . . . , 𝜙𝑀 ). Then, the actor with mixture

policy is

𝜋𝜃,𝜙 (𝑎 | 𝑠) ≜
∑︁𝑀

𝑚=1

𝑔𝜃 (𝑚 | 𝑠) 𝜋 (𝑚)𝜙𝑚
(𝑎 | 𝑠), (5)

where𝑔𝜃 (· | 𝑠) ∈ Δ𝑀 is a gating distribution over experts, parameterized by 𝜃 . A standard choice is a

softmax gate 𝑔𝜃 (𝑚 | 𝑠) =
exp(𝑢 (𝑚)

𝜃
(𝑠 ) )∑𝑀

𝑗=1
exp(𝑢 ( 𝑗 )

𝜃
(𝑠 ) )

, where 𝑢
(𝑚)
𝜃
(𝑠) is a score function (e.g., linear or a shallow

network). Our analysis assumes the score functions are regular enough so that ∇𝜃 log𝑔𝜃 (𝑚 | 𝑠) is
uniformly bounded. Although 𝜋𝜃,𝜙 is stationary as a mapping from 𝑠 to a distribution over actions,

it can effectively adapt to regime changes through state-dependent gating and expert specialization.

Critic and value function approximation. We maintain per-expert critics {𝑉 (𝑚)𝑤𝑚
}𝑀𝑚=1

, which esti-

mate the (differential) value of states under expert𝑚. For theoretical analysis, we focus on linear

critics:

𝑉
(𝑚)
𝑤𝑚
(𝑠) =𝜓 (𝑠)⊤𝑤𝑚, (6)

where𝜓 : S → R𝑑 is a bounded feature map with ∥𝜓 (𝑠)∥ ≤ 1, and𝑤𝑚 ∈ R𝑑 is the critic parameter

for expert𝑚.

Average-cost TD error and advantage estimate. Our performancemetric is average cost (Section 3.2).

Accordingly, we use the standard average-cost (relative-value) actor-critic surrogate based on a

centered TD error. For each expert𝑚, we maintain an estimate 𝜂 (𝑚) of the average cost under that
expert, and define the per-expert TD error

𝛿
(𝑚)
𝑡 ≜ 𝑐𝑡 − 𝑐 (𝑚) +𝑉 (𝑚)𝑤𝑚

(𝑠𝑡+1) −𝑉 (𝑚)𝑤𝑚
(𝑠𝑡 ). (7)

We use 𝐴
(𝑚)
𝑡 as an advantage estimate and a common single-step choice is 𝐴

(𝑚)
𝑡 ≈ 𝛿 (𝑚)𝑡 .

3.4 System Instantiations
This subsection provides two instantiations of our problem setting.

3.4.1 Instantiation A: Single-Queue System with Regime-Dependent Arrivals and Energy Prices. We

instantiate the RS-MDP with a canonical single-server queueing system whose operating conditions

(workload intensity and energy price) vary across regimes. The system state is 𝑠𝑡 = (𝑄𝑡 , 𝑥𝑡 ), where
𝑄𝑡 ∈ R+ is the queue backlog and 𝑥𝑡 ∈ X is an exogenous mode variable (e.g., workload phase,

channel condition, or server state).
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8 Ming Shi

Specifically, at each slot 𝑡 , the agent chooses a service action 𝑎𝑡 ∈ A ⊆ [0, 𝜇max]. Conditioned on
the latent regime 𝑧𝑡 = 𝑧, arrivals 𝐴

(𝑧 )
𝑡 are drawn and the queue evolves as

𝑄𝑡+1 =

[
𝑄𝑡 +𝐴 (𝑧𝑡 )𝑡 − 𝑎𝑡

]+
. (8)

We model the exogenous process as regime-dependent Markov dynamics 𝑥𝑡+1 ∼ F (𝑧𝑡 ) (· | 𝑥𝑡 ), and
arrivals as a regime- and state-dependent distribution,

𝐴
(𝑧𝑡 )
𝑡 ∼ D (𝑧𝑡 ) (· | 𝑥𝑡 ), (9)

e.g., Poisson arrivals with mean 𝜆 (𝑧 ) (𝑥𝑡 ). This captures workload phase shifts where both the

transition law of 𝑥𝑡 and the arrival intensity depend on the current regime. We consider a per-slot

cost that penalizes backlog (delay proxy) and energy expenditure with a regime-dependent price:

𝑐 (𝑧 ) (𝑄, 𝑥, 𝑎) =𝑤𝑄 + 𝜅 (𝑧 )𝑎2, (10)

where𝑤 > 0 weights delay/backlog and 𝜅 (𝑧 ) > 0 is a regime-dependent energy/price coefficient

(e.g., reflecting electricity price or carbon intensity). This model captures the canonical tradeoff: in

high-price regimes, aggressive service is costly, whereas in low-price regimes, aggressive service

is attractive for backlog reduction. Let 𝑠 = (𝑄, 𝑥) and 𝑠′ = (𝑄 ′, 𝑥 ′). Using (8)-(9), the regime-𝑧

transition kernel admits the factorization

𝑃 (𝑧 ) (𝑠′ | 𝑠, 𝑎) =
∑︁

𝐴≥0

D (𝑧 ) (𝐴 | 𝑥) · F (𝑧 ) (𝑥 ′ | 𝑥) · 1
{
𝑄 ′ = [𝑄 +𝐴 − 𝑎]+

}
. (11)

In this instantiation, regimes can alter (i) the arrival law D (𝑧 ) (· | 𝑥), i.e., traffic intensity, (ii)

the evolution of the exogenous mode F (𝑧 ) (· | 𝑥) i.e., phase persistence, and (iii) the energy/price

coefficient 𝜅 (𝑧 ) in (10).

3.4.2 Instantiation B: Downlink Wireless Scheduling with Regime-Dependent Channel Law. We next

instantiate the RS-MDP with a canonical downlink scheduling problem in a wireless base station

serving 𝑑 users. The system maintains per-user queues 𝑄𝑡,𝑖 ∈ R+ for 𝑖 ∈ [𝑑], and the wireless

channel state at time 𝑡 is denoted by 𝐻𝑡 ∈ H (capturing fading and interference).

Specifically, the system state is 𝑠𝑡 = (𝑄𝑡 , 𝐻𝑡 ), where 𝑄𝑡 = (𝑄𝑡,1, . . . , 𝑄𝑡,𝑑 ). The latent regime

𝑧𝑡 ∈ Z captures operating conditions such as mobility/interference patterns. Conditioned on 𝑧𝑡 = 𝑧,

we model the channel as a regime-dependent Markov process 𝐻𝑡+1 ∼ H (𝑧 ) (· | 𝐻𝑡 ), where H (𝑧 )
can specialize to the i.i.d. case by dropping the conditioning. At each time, the scheduler selects one

user 𝑎𝑡 ∈ A ≜ {1, 2, . . . , 𝑑} to serve. (Extensions to selecting rate vectors or multiple users per slot

are standard and omitted for clarity.) User 𝑖 receives exogenous arrivals 𝐴
(𝑧𝑡 )
𝑡,𝑖

, potentially regime-

dependent (e.g., demand phases), 𝐴
(𝑧 )
𝑡,𝑖
∼ D (𝑧 )

𝑖
(· | 𝐻𝑡 ). If user 𝑖 is scheduled, it receives service at an

achievable rate 𝑟𝑖 (𝐻𝑡 ; 𝑧𝑡 ), which can also depend on the regime (e.g., reflecting interference levels

or mobility). The per-user queue update is

𝑄𝑡+1,𝑖 =

[
𝑄𝑡,𝑖 +𝐴 (𝑧𝑡 )𝑡,𝑖

− 1{𝑎𝑡 = 𝑖} 𝑟𝑖 (𝐻𝑡 ; 𝑧𝑡 )
]+
, 𝑖 ∈ [𝑑] . (12)

We consider a standard delay-power objective 𝑐 (𝑧 ) (𝑄,𝐻, 𝑎) = ∑𝑑
𝑖=1
𝑤𝑖𝑄𝑖 + 𝜆 (𝑧 ) Power(𝑎, 𝐻 ), where

𝑤𝑖 > 0 are queue weights, Power(𝑎, 𝐻 ) is the transmit power incurred by serving user 𝑎 under

channel state 𝐻 (e.g., due to adaptive modulation/coding or target rate constraints), and 𝜆 (𝑧 ) > 0 is

a regime-dependent price coefficient that can encode time-varying energy prices or tighter power

constraints in certain operating modes.

In this instantiation, regimes can correspond to (i) mobility/interference patterns that change

the channel lawH (𝑧 ) and the achievable rate functions 𝑟𝑖 (·; 𝑧), and/or (ii) traffic demand phases

that change the arrival laws {D (𝑧 )
𝑖
} and the power price 𝜆 (𝑧 ) . Because both channel statistics and
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Mixture-of-Experts Actor-Critic for Regime-Switching MDPs 9

traffic intensities can shift across regimes, the scheduling policy that is optimal in one regime can

be persistently misaligned in another.

Definition 1 (Strong stability [31]). The queue process {𝑄𝑡 } is strongly stable if

lim sup𝑇→∞
1

𝑇

∑︁𝑇

𝑡=1

E[∥𝑄𝑡 ∥1] < ∞. (13)

4 Impossibility Results: Regret Lower Bounds andQueue Instability
This section explains why regime switching fundamentally changes what can be achieved by

stationary control rules. Even when each regime is individually stationary and admits a well-

behaved optimal stationary policy, a single stationary policy can be persistently misaligned with

at least one regime. The consequence is twofold: (i) a stationary policy can incur a non-vanishing
average-cost gap relative to a regime-aware benchmark, and (ii) in queueing instantiations, regime

mismatch can create sustained overload within long segments, leading to instability.

4.1 Impossibility I: A Stationary Policy Can Have a Non-Vanishing Cost Gap
We construct a simple RS-MDP where two regimes require opposite actions on a frequently vis-

ited state. Let S = {𝑠0, 𝑠1} and A = {𝑎+, 𝑎−}. The state evolution is deterministic and regime-

independent:

𝑠𝑡+1 = 𝑠1 if 𝑠𝑡 = 𝑠0; and 𝑠𝑡+1 = 𝑠0 if 𝑠𝑡 = 𝑠1.

Hence 𝑠0 is visited exactly every other step, independent of the policy. The two regimes differ only

in the cost at state 𝑠0:

• Regime 1: 𝑐 (1) (𝑠0, 𝑎
+) = 0, 𝑐 (1) (𝑠0, 𝑎

−) = 1, and 𝑐 (1) (𝑠1, 𝑎) = 0 for both actions.

• Regime 2: 𝑐 (2) (𝑠0, 𝑎
−) = 0, 𝑐 (2) (𝑠0, 𝑎

+) = 1, and 𝑐 (2) (𝑠1, 𝑎) = 0 for both actions.

Therefore, the optimal regime-aware benchmark policy 𝜋∗𝑡 will simply choose 𝑎+ at 𝑠0 in regime 1

and 𝑎− at 𝑠0 in regime 2, and achieve zero cost at all times.

Theorem 1 (Linear regret for stationary policies under conflicting regimes). For the above two-
regime construction, for any stationary randomized policy 𝜋 , there exists a piecewise-constant regime
sequence {𝑧𝑡 } such that

Reg(𝑇 ) ≥
⌊
𝑇

2

⌋
·max

{
𝜋 (𝑎+ | 𝑠0), 𝜋 (𝑎− | 𝑠0)

}
≥ 𝑇

4

− 1

2

. (14)

and hence Reg(𝑇 ) = Ω(𝑇 ) and Reg(𝑇 )/𝑇 = Ω(1).

Theorem 1 isolates a fundamental obstruction: when two regimes require conflicting actions

on a state that is visited with nontrivial frequency, any single stationary policy must randomize

and therefore be persistently suboptimal for at least one regime. Notably, this lower bound holds

even though the dynamics are completely benign (deterministic and regime-independent), so the

failure is not caused by slow mixing or hard exploration. Instead, it is caused by latent regime
dependence of the optimal action. Consequently, achieving sublinear tracking regret in RS-MDPs

requires a mechanism that can represent and select among multiple specialized behaviors (e.g.,

via mixtures) and an online adaptation/inference component (e.g., gating) that identifies which

behavior is appropriate from the observation. We provide the proof sketch for Theorem 1 below,

and please see Appendix C for the complete proof.
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Proof sketch. Let 𝑝 ≜ 𝜋 (𝑎+ | 𝑠0) ∈ [0, 1] for the stationary randomized policy 𝜋 . Since the

transition is deterministic and alternates between 𝑠0 and 𝑠1 regardless of the action, the state 𝑠0 is

visited exactly ⌊𝑇 /2⌋ times over horizon 𝑇 . In regime 1, the expected cost incurred at each visit to

𝑠0 equals 1 − 𝑝 (because only action 𝑎− is costly), while in regime 2 it equals 𝑝 (because only action

𝑎+ is costly). Costs at 𝑠1 are always 0. Hence, if the entire horizon is spent in regime 𝑧 ∈ {1, 2}, the
expected cumulative cost of 𝜋 is

E
[∑︁𝑇

𝑡=1

𝑐 (𝑧 ) (𝑠𝑡 , 𝑎𝑡 )
]
=

⌊
𝑇

2

⌋
× [(1 − 𝑝)1 {𝑧 = 1} + 𝑝1 {𝑧 = 2}] .

The regime-aware benchmark 𝜋∗𝑡 chooses the zero-cost action at 𝑠0 for the active regime, so it

achieves zero cumulative cost under either regime. Therefore, for the regime 𝑧 that is worse for 𝜋

(𝑧 = 1 if 1 − 𝑝 ≥ 𝑝 and 𝑧 = 2 otherwise),

Reg(𝑇 ) = E
[∑︁𝑇

𝑡=1

𝑐 (𝑧 ) (𝑠𝑡 , 𝑎𝑡 )
]
≥

⌊
𝑇

2

⌋
·max{𝑝, 1 − 𝑝} ≥ 𝑇

4

− 1

2

, (15)

which implies Reg(𝑇 ) = Ω(𝑇 ) and Reg(𝑇 )/𝑇 = Ω(1). □
The lower bound of regret in Theorem 1 is not an artifact of rapid switching. In fact, linear regret

persists even when regimes are required to be piecewise constant with a prescribed minimum

segment length 𝐿min.

Theorem 2 (Linear regret under slow switching (minimum segment length)). Fix any stationary
randomized policy 𝜋 and any 𝐿min ≥ 1. For any horizon 𝑇 ≥ 𝐿min, there exists a piecewise-constant
regime sequence {𝑧𝑡 }𝑇𝑡=1

satisfying the segment-length constraint 𝐿min such that Reg(𝑇 ) = Ω(𝑇 ). In
particular, one may choose either:
(1) No switching: 𝑆𝑇 = 0 (a single regime for all 𝑡 ), in which case 𝐿min =𝑇 and Reg(𝑇 ) ≥ 𝑇 /4− 1/2;

or
(2) With switching: an alternating regime sequence with segment length exactly 𝐿min, which yields

Reg(𝑇 ) ≥
(
1

4

− 1

2𝐿min

)
𝑇, for all 𝑇 that are multiples of 2𝐿min . (16)

The construction in the proof highlights a key insight that regime switching creates competing
optima. Even if the transition dynamics are benign and perfectly predictable, the optimal action

can depend on an unobserved regime. Thus, achieving sublinear tracking regret requires either (i)

explicit regime inference, or (ii) a policy class capable of representing multi-modal behavior (e.g.,

mixtures) together with an online selection mechanism. We provide the proof sketch for Theorem 2

below, and please see Appendix D for the complete proof.

Proof sketch. For (i), select the regime (1 or 2) that maximizes the stationary policy’s per-step

loss (as in Theorem 1). This produces Reg(𝑇 ) ≥ 𝑇 /4 and trivially satisfies any minimum-segment

constraint since there is only one segment.

For (ii), partition time into segments of length 𝐿min and alternate regimes 1, 2, 1, 2, . . .. Within any

segment, the state 𝑠0 is visited at least ⌊𝐿min/2⌋ times (because the chain alternates deterministically),

and each visit to 𝑠0 incurs expected cost 1 − 𝑝 in regime 1 and 𝑝 in regime 2, where 𝑝 = 𝜋 (𝑎+ | 𝑠0).
If there are 𝐾 =𝑇 /𝐿min segments with 𝐾 even, then exactly 𝐾/2 segments are in each regime, and

the total expected cost is at least

𝐾

2

⌊
𝐿min

2

⌋
(1 − 𝑝) + 𝐾

2

⌊
𝐿min

2

⌋
𝑝 =

𝐾

2

⌊
𝐿min

2

⌋
≥

(
1

4

− 1

2𝐿min

)
𝑇 .

The regime-aware benchmark achieves zero cost, hence (16) follows. □
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4.2 Impossibility II: Regime Mismatch Can DestroyQueue Stability
We now show that, in queueing systems, regime mismatch can have a qualitatively stronger effect

than a constant cost suboptimality, i.e., persistent mismatch within a long regime segment creates a

service deficit that accumulates over time, leading to sustained backlog growth and loss of stability.

This motivates regime-adaptive scheduling and, in our instantiations, the inclusion of a stabilizing

baseline expert to protect against inference errors.

Consider two queues 𝑄𝑡,1, 𝑄𝑡,2. In each slot, the agent chooses 𝑎𝑡 ∈ {1, 2} and serves one packet

from queue 𝑎𝑡 (if nonempty). Let arrivals be regime-dependent with means

• Regime 1: E[𝐴𝑡,1 | 𝑧𝑡 = 1] = 𝜆𝐻 , E[𝐴𝑡,2 | 𝑧𝑡 = 1] = 𝜆𝐿 ,
• Regime 2: E[𝐴𝑡,1 | 𝑧𝑡 = 2] = 𝜆𝐿 , E[𝐴𝑡,2 | 𝑧𝑡 = 2] = 𝜆𝐻 ,
where 𝜆𝐻 ∈ (1/2, 1) and 𝜆𝐿 > 0 is small. We focus on stationary randomized priority policies that

serve queue 1 with a fixed probability 𝑝 ∈ [0, 1] (and queue 2 otherwise), independent of state.

Theorem 3 (No fixed randomized priority stabilizes both regimes). There exist 𝜆𝐻 ∈ (1/2, 1) and
sufficiently small 𝜆𝐿 > 0 such that:
(1) (Per-regime stabilizability) For each fixed regime 𝑧 ∈ {1, 2}, there exists a stationary policy that

stabilizes the two-queue system when the regime is held fixed at 𝑧.
(2) (Global impossibility for fixed priorities) No stationary randomized priority policy that serves

queue 1 with a fixed parameter 𝑝 ∈ [0, 1] stabilizes the system under regime switching when
regimes persist for sufficiently long contiguous periods.

Theorem 3 isolates a structural incompatibility. Specifically, under regime 1, stability requires

devoting a large service fraction to queue 1, whereas under regime 2 it requires devoting a large

fraction to queue 2. When 𝜆𝐻 > 1/2, these requirements cannot be satisfied simultaneously by any

fixed service split (𝑝, 1 − 𝑝). Unlike regret gaps in cost-only objectives, a queueing mismatch is

state-amplifying: once a queue becomes overloaded in a regime, the backlog accumulates and cannot

be instantaneously eliminated after the regime changes. This is precisely why regime adaptivity

and stability-aware safeguards (e.g., a safe expert or drift-based guardrails) matter in systems. We

provide the proof sketch for Theorem 3 below, and please see Appendix E for the complete proof.

Proof sketch. A fixed-𝑝 policy allocates long-run service fractions (𝑝, 1 − 𝑝). In regime 1, queue

1 is the heavy queue and stability requires 𝑝 > 𝜆𝐻 (up to an arbitrarily small slack). In regime 2,

queue 2 is the heavy queue and stability requires 1 − 𝑝 > 𝜆𝐻 , i.e., 𝑝 < 1 − 𝜆𝐻 . When 𝜆𝐻 > 1/2, the
inequalities 𝑝 > 𝜆𝐻 and 𝑝 < 1 − 𝜆𝐻 cannot both hold. Therefore, for any fixed 𝑝 , there exists a

regime in which the heavy queue has a strict service deficit; if that regime persists for long intervals,

backlog grows without bound, violating any strong stability notion. □
The above incompatibility implies not only instability but also an explicit linear growth of backlog

within a long segment of the “bad” regime. This result connects directly to our piecewise-constant

switching model and clarifies why slow switching does not rescue fixed stationary priorities.

Theorem 4 (Backlog grows linearly with 𝐿min under slow switching). Fix any stationary randomized
priority policy with parameter 𝑝 ∈ [0, 1]. Choose 𝜆𝐻 ∈ (1/2, 1) and sufficiently small 𝜆𝐿 > 0 as in
Theorem 3. Then there exists a piecewise-constant regime sequence satisfying the minimum segment
length constraint 𝐿min such that, for infinitely many regime-segment endpoints 𝑡 ,

E
[
𝑄𝑡,1 +𝑄𝑡,2

]
≥ Ω(𝐿min). (17)

More concretely, letting 𝛿 (𝑝) ≜ 𝜆𝐻 −max{𝑝, 1 − 𝑝} > 0, there exists a regime segment of length 𝐿min

starting at some 𝑡0 such that

E
[
𝑄𝑡0+𝐿min,𝑖

∗ −𝑄𝑡0,𝑖∗
]
≥ 𝛿 (𝑝) 𝐿min −𝑂 (1), (18)
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12 Ming Shi

where 𝑖∗ ∈ {1, 2} is the heavy queue in that segment.

Theorem 4 quantifies the compounding effect of mismatch. Specifically, in a bad regime segment

of length 𝐿min, the overloaded queue accumulates at least Θ(𝐿min) additional backlog in expectation.

Hence, even if regime switches are infrequent (large 𝐿min), fixed stationary priorities are not merely

suboptimal. They can be unsafe in the sense of creating large transient backlogs that break stability

objectives. This directly motivates two design principles used later: (i) fast adaptation after a

detected switch (via gating/expert selection), and (ii) stability protection when the regime inference

is uncertain (via a stabilizing baseline expert with enforced minimum usage). We provide the proof

sketch for Theorem 4 below, and please see Appendix F for the complete proof.

Proof sketch. Fix 𝑝 ∈ [0, 1] and define 𝛿 (𝑝) ≜ 𝜆𝐻 − min{𝑝, 1 − 𝑝} > 0, which is positive since

𝜆𝐻 > 1/2 implies min{𝑝, 1 − 𝑝} ≤ 1/2. Choose the “bad” regime so that the heavy queue is the

one that the fixed-𝑝 policy serves less often: if 𝑝 ≤ 1/2, use regime 1 (queue 1 is heavy); otherwise

use regime 2 (queue 2 is heavy). Let 𝑖∗ ∈ {1, 2} denote the heavy queue in this bad regime, and

consider a regime segment [𝑡0, 𝑡0 + 𝐿min − 1] during which the bad regime persists. In each slot of

this segment, queue 𝑖∗ has expected arrival rate 𝜆𝐻 . Under the fixed-𝑝 priority rule, the probability

of selecting the heavy queue 𝑖∗ is exactly min{𝑝, 1 − 𝑝} (by construction of the bad regime). Hence,

whenever𝑄𝑡,𝑖∗ > 0, the expected service (departure) from queue 𝑖∗ in that slot is min{𝑝, 1− 𝑝}, and
the one-step conditional drift satisfies

E
[
𝑄𝑡+1,𝑖∗ −𝑄𝑡,𝑖∗ | 𝑄𝑡,𝑖∗ > 0

]
≥ 𝜆𝐻 −min{𝑝, 1 − 𝑝} = 𝛿 (𝑝). (19)

Summing these positive drifts over the 𝐿min slots yields an expected backlog increase on the

order of 𝛿 (𝑝)𝐿min, up to an 𝑂 (1) boundary term accounting for possible emptiness at the very

beginning of the segment and the [·]+ truncation. Therefore, at the end of such a bad segment,

E[𝑄𝑡0+𝐿min,𝑖
∗ −𝑄𝑡0,𝑖∗ ] ≥ 𝛿 (𝑝)𝐿min −𝑂 (1), proving the stated linear-in-𝐿min growth. Repeating such

bad segments infinitely often (consistent with the piecewise-constant switching model) forces

arbitrarily large expected backlog, precluding strong stability. □
Together, Theorems 3-4 show that in queueing systems, regime switching can turn a seemingly

mild modeling change into a sharp stability challenge. Fixed stationary priorities are incompatible

with regimes that swap the identity of the bottleneck queue. This justifies regime-adaptive control

architectures and stability-aware safeguards in RL.

5 Algorithm Design: Regime-Aware Mixture-of-Experts Actor-Critic with Safety
Projection

Our goal is to achieve sublinear tracking regret in RS-MDPs while maintaining stability in queueing

instantiations. Impossibility I shows that a single stationary behavior can have an Ω(1) per-step
gap under conflicting regimes, hence we must represent multiple specialized behaviors and select
among them online. Impossibility II further shows that, in queueing systems, persistent regime

mismatch can create a sustained service deficit and destroy stability, hence the selection mechanism

must be robust to inference errors and exploration.

We propose Regime-Aware Mixture-of-Experts Actor-Critic (RA-MoE-AC) with Safety Projection

(see Algorithm 1), which combines four tightly coupled components, including (i) 𝑀 expert actors

{𝜋 (𝑚)
𝜙𝑚
}𝑀𝑚=1

to represent regime-dependent behaviors, (ii) a state-dependent gating rule 𝑔𝜃 (· | 𝑠) to
perform online expert selection for regime inference, (iii) per-expert critics {𝑉 (𝑚)𝑤𝑚

} (and average-

cost estimates {𝑐 (𝑚) }) to generate low-variance advantage surrogates, and (iv) a safety projection
that enforces a minimum selection probability on a stabilizing expert in queueing instantiations.
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Algorithm 1 Regime-Aware MoE Actor-Critic with Safety Projection (RA-MoE-AC)

Require: Experts {𝜋 (𝑚)
𝜙𝑚
}𝑀𝑚=1

, gating 𝑔𝜃 (· | 𝑠), critics {𝑉 (𝑚)𝑤𝑚
}𝑀𝑚=1

, stepsizes {𝛽𝑡 , 𝛼𝑡 , 𝜂𝑡 , 𝜌𝑡 }, safe
expert𝑚safe, minimum probability 𝑝min ∈ (0, 1), clipping constant 𝐶 .

1: Initialize 𝜙
(1)
𝑚 ,𝑤

(1)
𝑚 , 𝑐 (𝑚,1) for all𝑚, and 𝜃 (1) .

2: for 𝑡 = 1, 2, . . . ,𝑇 do
3: Observe 𝑠𝑡
4: Compute gate 𝑔𝑡 (𝑚) ← 𝑔𝜃 (𝑡 ) (𝑚 | 𝑠𝑡 ) for all𝑚
5: Safety projection: 𝑔𝑡 (·) ← Π

(
𝑔𝑡 (·) ; 𝑔𝑡 (𝑚safe) ≥ 𝑝min

)
6: Sample expert𝑚𝑡 ∼ 𝑔𝑡 (·)
7: Sample action 𝑎𝑡 ∼ 𝜋 (𝑚𝑡 )

𝜙
(𝑡 )
𝑚𝑡

(· | 𝑠𝑡 )
8: Execute action 𝑎𝑡 , and observe cost 𝑐𝑡 and next state 𝑠𝑡+1

9: (Selected expert) average-cost update: 𝑐 (𝑚𝑡 ,𝑡+1) ← (1 − 𝜌𝑡 )𝑐 (𝑚𝑡 ,𝑡 ) + 𝜌𝑡 𝑐𝑡
10: (Selected expert) TD residual: 𝛿 (𝑚𝑡 )

𝑡 ← 𝑐𝑡 − 𝑐 (𝑚𝑡 ,𝑡 ) +𝑉 (𝑚𝑡 )
𝑤
(𝑡 )
𝑚𝑡

(𝑠𝑡+1) −𝑉 (𝑚𝑡 )
𝑤
(𝑡 )
𝑚𝑡

(𝑠𝑡 )

11: Critic (fast timescale):𝑤 (𝑡+1)
𝑚𝑡

← 𝑤
(𝑡 )
𝑚𝑡
− 𝛽𝑡 𝛿 (𝑚𝑡 )

𝑡 ∇𝑤𝑉 (𝑚𝑡 )
𝑤 (𝑠𝑡 )

��
𝑤=𝑤

(𝑡 )
𝑚𝑡

12: Actor (slow timescale): 𝜙 (𝑡+1)
𝑚𝑡

← 𝜙
(𝑡 )
𝑚𝑡
− 𝛼𝑡 𝛿 (𝑚𝑡 )

𝑡 ∇𝜙 log𝜋
(𝑚𝑡 )
𝜙
(𝑎𝑡 | 𝑠𝑡 )

��
𝜙=𝜙

(𝑡 )
𝑚𝑡

13: Gating loss:
14: if full information then
15: Compute 𝛿

(𝑚)
𝑡 for all𝑚 via (20) and set ℓ̂𝑡 (𝑚) ← ℓ𝑡 (𝑚) via (21)

16: else
17: Set ℓ̂𝑡 (·) via the bandit estimator (22)

18: end if
19: Gating update: update 𝜃 (𝑡+1) ← 𝜃 (𝑡 ) − 𝜂𝑡∇𝜃

( ∑𝑀
𝑚=1

𝑔𝜃 (𝑚 | 𝑠𝑡 ) ℓ̂𝑡 (𝑚)
)���
𝜃=𝜃 (𝑡 )

20: end for
21: return mixture policy 𝜋𝜃,𝜙 in (5)

5.1 Technical Difficulties and Design Ideas
Before formally introducing Algorithm 1, we highlight the core technical difficulties created by

regime switching and explain the corresponding design ideas implemented in Algorithm 1.

D1 (critic drift under switching): Bellman targets change within the horizon. When 𝑧𝑡 switches,

both the stationary distribution and the (average-cost) Bellman equations change. As a result, a

critic trained on one segment can be systematically biased on the next, which then corrupts actor

gradients. To address this, we maintain per-expert critics and update the selected expert critic on

the fastest timescale (Algorithm 1, TD residual and critic update; Lines 9–11). Under slow switching

and per-regime mixing, these updates track the segment-local value surrogate.

D2 (latent regime inference): the agent must select the right expert without observing 𝑧𝑡 . Sublinear
tracking regret requires a mechanism that quickly concentrates probability on the expert most

compatible with the current regime, even though 𝑧𝑡 is hidden. To address this, we treat gating

as online learning driven by a bounded mismatch loss based on TD residuals (Algorithm 1, loss

computation and gate update; Lines 13–18). This directly operationalizes “regime inference” from

observable trajectories.

D3 (coupled learning): gate quality depends on experts and expert learning depends on the gate.
If the gate collapses early, non-selected experts stop receiving samples and cannot improve. In
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14 Ming Shi

addition, if experts are inaccurate, the gate receives noisy mismatch signals and may oscillate

after switches. To address this, we develop (i) timescale separation 𝛽𝑡 ≫ 𝜂𝑡 ≫ 𝛼𝑡 (critic fast, gate

intermediate, actor slow), (ii) clipped gating losses to control variance (Line 13), and (iii) an explicit

sampling floor via safety projection (Line 5), which prevents complete starvation of the stabilizing

expert.

D4 (stability under inference errors): wrong expert selection can be catastrophic in queues. Impossi-

bility II shows mismatch can create a sustained service deficit and backlog growth within a long

segment, so stability cannot be left to “emerge” from regret minimization alone. To address this,
we embed a known stabilizing baseline 𝜋safe as expert𝑚safe and enforce 𝑔𝑡 (𝑚safe | 𝑠𝑡 ) ≥ 𝑝min at

every time (Algorithm 1, safety projection; Line 5). This provides a direct handle for Lyapunov-drift

arguments in the stability analysis.

D5 (switching overhead): the gate must react fast after a regime change. Even under slow switching,

the post-switch transient dominates performance if the gate re-concentrates too slowly. To address
this, gate stepsize 𝜂𝑡 is chosen to balance noise and responsiveness (Line 18), and the TD-residual-

based loss naturally spikes right after a switch, accelerating reweighting.

5.2 Main algorithm: RA-MoE-AC with safety projection
We present a regime-aware MoE actor-critic algorithm (with safety projection for queue stability).

For each expert𝑚, we maintain actor parameters 𝜙𝑚 , critic parameters𝑤𝑚 for a differential value

approximation 𝑉
(𝑚)
𝑤𝑚
(𝑠), and an average-cost estimate 𝑐 (𝑚) . At each time 𝑡 , the gate produces a

distribution over experts, and then we enforce safety and sample an expert to act. Given transition

(𝑠𝑡 , 𝑎𝑡 , 𝑐𝑡 , 𝑠𝑡+1), we define the average-cost TD residual for expert𝑚 by

𝛿
(𝑚)
𝑡 ≜ 𝑐𝑡 − 𝑐 (𝑚) +𝑉 (𝑚)𝑤𝑚

(𝑠𝑡+1) −𝑉 (𝑚)𝑤𝑚
(𝑠𝑡 ). (20)

We use the clipped squared residual as a bounded mismatch loss, i.e.,

ℓ𝑡 (𝑚) ≜ clip

(
(𝛿 (𝑚)𝑡 )2, 0,𝐶

)
, (21)

so that experts whose critics are more Bellman-consistent on the current trajectory receive lower

loss and therefore higher gate weight. When 𝑀 is small, we compute 𝛿
(𝑚)
𝑡 (and thus ℓ𝑡 (𝑚)) for

all𝑚 and update the gate with full-information losses (Lines 13–14). However, when 𝑀 is large,

we can update using only the selected expert𝑚𝑡 via an unbiased importance-weighted estimator

(Lines 15–17)

ℓ̂𝑡 (𝑚) ≜
1{𝑚 =𝑚𝑡 }
𝑔𝑡 (𝑚𝑡 | 𝑠𝑡 )

clip

(
(𝛿 (𝑚𝑡 )
𝑡 )2, 0,𝐶

)
, (22)

Our main theorems later analyze the full-information gate. However, the bandit variant follows

standard EXP3-style arguments with the usual

√
𝑀 dependence. Moreover, for queueing-system

instantiations, we assume there exists a known stabilizing baseline policy 𝜋safe (e.g., a MaxWeight-

type rule) that ensures a Lyapunov drift condition for the queue component 𝑄𝑡 , implying positive

recurrence (strong stability) of the induced queueing process. This baseline can be embedded as a

dedicated “safe expert” in the mixture, and our algorithm enforces a minimum selection probability

for it to guarantee stability. Specifically, our algorithm includes four components addressing the

difficulties discussed in Section 5.1.

C1 (Lines 3–8): gating for safe sampling. The gate 𝑔𝜃 (𝑡 ) (· | 𝑠𝑡 ) converts the latent-regime problem

into online expert selection. The safety projection (Line 5) enforces 𝑔𝑡 (𝑚safe) ≥ 𝑝min, guaranteeing

that stabilizing actions remain available even when regime inference is wrong. Sampling𝑚𝑡 ∼ 𝑔𝑡
(Line 6) implements the mode-selection decision required to circumvent Impossibility I. Then,

, Vol. 1, No. 1, Article . Publication date: January 2026.



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735
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the algorithm acts using the selected expert policy (Line 7) and observes (𝑐𝑡 , 𝑠𝑡+1) (Line 8). Under
regime switching, this single transition is the only information available.

C2 (Lines 9–11): fast critic tracking produces a usable advantage signal. Line 9 updates 𝑐 (𝑚𝑡 )
to

maintain a running estimate of the expert’s average cost. Line 10 forms the centered TD residual

𝛿
(𝑚𝑡 )
𝑡 , which is an advantage surrogate for the actor and a mismatch certificate for the gate. Line 11

updates𝑤𝑚𝑡
on the fast timescale, reducing critic drift within a regime segment (D1).

C3 (Line 12): slow actor update avoids chasing switching transients. Line 12 performs the policy-

gradient step using 𝛿
(𝑚𝑡 )
𝑡 as the advantage estimate. Keeping 𝛼𝑡 smaller than the gate step-sizes

prevents the actor from overreacting to the immediate post-switch transient, which is critical when

𝐿min is only moderately larger than the mixing time (D3–D5).

C4 (Lines 13–18): gate update reweights experts using bounded mismatch losses. Lines 13–17 define
ℓ̂𝑡 (·) either from full-information losses (small𝑀) or from the bandit estimator (large𝑀). Line 18

then updates 𝜃 to reduce the expected mismatch under the gate at state 𝑠𝑡 . After a regime change,

TD residuals for mismatched experts spike, so the gate update naturally re-concentrates on the

best expert for the new segment (D2, D5), while clipping controls variance and supports finite-time

analysis.

6 Theoretical Analysis
This section states finite-time guarantees for Algorithm 1 that are consistent with: (i) the RS-MDP

model and tracking-regret metric in Section 3, (ii) the necessity of regime adaptivity highlighted

by the impossibility results in Section 4, and (iii) the MoE actor-critic with TD-residual-driven

online gating and safety projection in Section 5. We emphasize switching-aware bounds that scale
explicitly with the number of regime switches 𝑆𝑇 , the minimum segment length 𝐿min, and the

per-regime mixing time 𝑡mix.

6.1 Preliminaries: Two-Level Benchmarks, Regularity, and Mixing
Recall the regime process is piecewise constant, i.e., there exist switch times 1 = 𝜏0 < 𝜏1 < · · · <
𝜏𝑆𝑇 ≤ 𝑇 such that the regime is constant on each segment I𝑘 ≜ {𝜏𝑘−1, . . . , 𝜏𝑘 − 1}, 𝑘 = 1, . . . , 𝑆𝑇 + 1.

Let 𝑧𝑘 denote the regime onI𝑘 , and let 𝐿𝑘 ≜ |I𝑘 |, so that 𝐿min = min𝑘 𝐿𝑘 . Our tracking regret Reg(𝑇 )
in (4) benchmarks against the regime-optimal stationary policy 𝜋∗,(𝑧𝑡 ) , which may lie outside the

MoE expert families. To separate learnability within the class frommodeling mismatch, we introduce
an intermediate, in-class comparator. For each expert𝑚 ∈ [𝑀], let Π (𝑚) ≜ {𝜋 (𝑚)

𝜙
: 𝜙 ∈ Φ𝑚} denote

its policy family. Define the in-class per-regime oracle (breaking ties arbitrarily) by

(𝑚ic (𝑧), 𝜙 ic (𝑧)) ∈ arg min𝑚∈[𝑀 ],𝜙∈Φ𝑚 𝐽 (𝑧 )
(
𝜋
(𝑚)
𝜙

)
and 𝜋 ic,(𝑧 ) ≜ 𝜋

(𝑚ic (𝑧 ) )
𝜙 ic (𝑧 ) . (23)

We quantify the unavoidable policy-class mismatch by the per-regime approximation gap

Approx𝜋 ≜ max

𝑧∈Z

(
𝐽 (𝑧 )

(
𝜋 ic,(𝑧 )

)
− 𝐽 (𝑧 )

(
𝜋∗,(𝑧 )

))
≥ 0. (24)

Later, our regret bound naturally decomposes as Reg(𝑇 ) ≲ learning regret for 𝜋 ic,(𝑧𝑡 ) +𝑇Approx𝜋 ,

so Approx𝜋 captures the portion that no algorithm can remove without enlarging the expert class.

Regularity assumptions. We use two standard mild technical conditions to control stochastic-

gradient magnitudes and to ensure the critics are well-posed.
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Assumption 1 (Bounded score functions). For the policy class under consideration, we assume

bounded score functions, i.e., there exist constants 𝐺𝜋 ,𝐺𝑔 < ∞ such that for all𝑚 ∈ [𝑀],

∥∇𝜙𝑚 log𝜋
(𝑚)
𝜙𝑚
(𝑎 | 𝑠)∥ ≤ 𝐺𝜋 and ∥∇𝜃 log𝑔𝜃 (𝑚 | 𝑠)∥ ≤ 𝐺𝑔 . (25)

Assumption 2 (Critic realizability). Fix 𝑧 ∈ Z and an expert policy 𝜋
(𝑚)
𝜙𝑚

. Let 𝜇 (𝑧,𝑚) be the

stationary distribution of the induced Markov chain under (𝑃 (𝑧 ) , 𝜋 (𝑚)
𝜙𝑚
), and define Σ(𝑧,𝑚) ≜

E𝑠∼𝜇 (𝑧,𝑚) [𝜓 (𝑠)𝜓 (𝑠)⊤]. Assume Σ(𝑧,𝑚) ⪰ 𝜆min𝐼 uniformly over 𝑧,𝑚, 𝜙𝑚 for some 𝜆min > 0. More-

over, the average-cost projected Bellman equation admits a unique fixed point𝑤∗,(𝑧,𝑚) (𝜙𝑚) in the

linear class, up to an additive constant in the differential value.

Remark 1. Assumption 1 holds for standard softmax/gated-softmax parameterizations with bounded

features and parameters, e.g., enforced via projection onto a compact set, ensuring uniformly

bounded stochastic gradients. Assumption 2 is a standard identifiability condition. It makes the

linear TD normal equations well-conditioned under each (𝑧,𝑚), so the critic target (projected

Bellman fixed point) is well-defined and trackable.

Mixing as a regime-wise systems property. The property below formalizes that, within any regime

and under any stationary policy, the induced Markov chain forgets its initial condition quickly.

Definition 2 (Uniform geometric mixing within regimes). For every regime 𝑧 ∈ Z and every

stationary randomized policy 𝜋 ∈ Πstat, let 𝑃
(𝑧 )
𝜋 be the policy-induced Markov kernel on S,

𝑃
(𝑧 )
𝜋 (𝑠′ | 𝑠) ≜

∑︁
𝑎∈A

𝜋 (𝑎 | 𝑠) 𝑃 (𝑧 ) (𝑠′ | 𝑠, 𝑎). (26)

We say the RS-MDP satisfies uniform geometric mixing within regimes if, for each (𝑧, 𝜋), the
Markov chain with kernel 𝑃

(𝑧 )
𝜋 admits a unique stationary distribution 𝜇

(𝑧 )
𝜋 , and there exist constants

𝐶mix ≥ 1 and 𝜌 ∈ (0, 1), independent of (𝑧, 𝜋), such that for all 𝑠 ∈ S and all 𝑡 ≥ 0,

TV

(
(𝑃 (𝑧 )𝜋 )𝑡 (𝑠, ·), 𝜇 (𝑧 )𝜋

)
≤ 𝐶mix 𝜌

𝑡 , (27)

where (𝑃 (𝑧 )𝜋 )𝑡 is the 𝑡-step kernel, i.e., the 𝑡-fold composition of 𝑃
(𝑧 )
𝜋 .

Remark 2. Geometric mixing is a standard consequence of mild “randomization” and “connectivity”

conditions, which are often natural in systems models. A concrete sufficient condition is a uniform

Doeblin minorization, i.e., if there exist 𝛼 ∈ (0, 1) and 𝜈 ∈ Δ(S) such that 𝑃 (𝑧 ) (· | 𝑠, 𝑎) ≥ 𝛼𝜈 (·) for
all 𝑧, 𝑠, 𝑎, then 𝑃

(𝑧 )
𝜋 (· | 𝑠) ≥ 𝛼𝜈 (·) for all 𝑧, 𝜋, 𝑠 . Writing 𝑃

(𝑧 )
𝜋 = 𝛼1𝜈⊤ + (1 − 𝛼)𝑃 , one obtains the TV

contraction TV(𝜇𝑃 (𝑧 )𝜋 , 𝜇′𝑃 (𝑧 )𝜋 ) ≤ (1−𝛼)TV(𝜇, 𝜇′), which yields (27) with𝐶mix = 1 and 𝜌 = 1−𝛼 . In
queueing/wireless models, analogous geometric mixing follows from a standard “drift-to-a-small-set

+ minorization” argument, i.e., exogenous randomness of arrivals and/or channels provides noise,

while a stabilizing and exploratory action floor ensures recurrent visits to a small set, together

implying geometric ergodicity of the controlled chain under each frozen (𝑧, 𝜋).

The property in Definition 2 indicates that burn-in bias decays geometrically (see Lemma 1).

Lemma 1 (Per-regime mixing and burn-in bias). Fix a regime 𝑧 and any stationary policy 𝜋 ∈ Πstat,
and let 𝜇 (𝑧 )𝜋 be the stationary distribution of 𝑃 (𝑧 )𝜋 . Then, for any measurable 𝑓 : S → [−1, 1], any
initial state 𝑠 ∈ S, and any 𝑡 ≥ 1, we have���E[𝑓 (𝑠𝑡 ) | 𝑠1 = 𝑠] − E𝑠∼𝜇 (𝑧)𝜋

[𝑓 (𝑠)]
��� ≤ 2𝐶mix𝜌

𝑡−1 . (28)

In particular, after 𝑡 ≥ 1 +
⌈

log(𝜖/𝐶mix )
log 𝜌

⌉
, the bias is at most 2𝜖 .
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Lemma 1 shows that within any regime 𝑧 and under any stationary policy 𝜋 , the distribution

of the state 𝑠𝑡 converges geometrically fast to the stationary distribution 𝜇
(𝑧 )
𝜋 . Consequently, time

samples collected after 𝑡mix steps are approximately stationary. This lemma is the technical bridge

that allows us to treat each regime segment as “nearly stationary” after a short transient. See

Appendix G for the proof.

6.2 Main Results: Regime-Aware Tracking and Stability
This subsection formalizes the main theoretical guarantees for RA-MoE-AC. As motivated by the

impossibility results (Section 4), sublinear tracking regret requires both a multi-modal policy class

(experts) and an online expert-selection mechanism (gate). Our analysis follows a modular pipeline

from mixing, critic, to gating regret, regret decomposition, until the final main tracking bound, plus

a separate stability guarantee under safety projection.

Lemma 2 (Tracking of 𝑐 (𝑚) and 𝑤𝑚 within a fixed regime). Consider a segment I𝑘 of length 𝐿𝑘
with fixed regime 𝑧𝑘 . Under Assumption 1 and Assumption 2, there exists a burn-in 𝑏 = Θ(𝑡mix), such
that for all 𝑡 ∈ I𝑘 with 𝑡 ≥ 𝜏𝑘−1 + 𝑏 and all experts𝑚 ∈ [𝑀], the full-information iterates satisfy

E
[
|𝑐 (𝑚,𝑡 ) − 𝐽 (𝑧𝑘 ) (𝜋 (𝑚)

𝜙
(𝑡 )
𝑚

) |
]
≤ 𝑂 (𝜌max) +𝑂 (𝛽max) +𝑂

(
sup𝑢∈I𝑘

𝛼𝑢

𝛽𝑢

)
+𝑂

(
𝐶mix𝜌

𝑏
)
, (29)

E
[
∥𝑤 (𝑡 )𝑚 −𝑤∗,(𝑧𝑘 ,𝑚) (𝜙 (𝑡 )𝑚 )∥

]
≤ 𝑂 (𝛽max) +𝑂

(
sup𝑢∈I𝑘

𝛼𝑢

𝛽𝑢

)
+𝑂

(
𝐶mix𝜌

𝑏
)
, (30)

where 𝛽max ≜ sup𝑢∈I𝑘 𝛽𝑢 , 𝜌max ≜ sup𝑢∈I𝑘 𝜌𝑢 , and constants depend only on (𝑐max, 𝜆min,𝐶mix, 𝜌).
Lemma 2 shows that within any regime segment, after a short burn-in, each expert’s critic

behaves as if it were trained on approximately stationary samples from that regime. The dominant

penalty is the standard timescale-separation term sup(𝛼𝑡/𝛽𝑡 ). If the actor moves slowly relative to

the critic, value surrogates can track quickly and do not corrupt the gate/actor updates. We provide

the proof sketch for Lemma 2 below, and please see Appendix H for the complete proof.

Proof sketch. Fix (𝑧𝑘 ,𝑚) and𝜙𝑚 over a short window. Under Definition 2 and Lemma 1, theMarkov

noise becomes nearly stationary after 𝑏 = Θ(𝑡mix), so the TD recursion is close to its mean ODE

(projected Bellman equation). Assumption 2 gives well-posedness and uniform conditioning, yield-

ing contraction of the mean dynamics. Finite-time stochastic approximation bounds for linear TD

with Markovian noise then give an𝑂 (𝛽max) term, while the slow drift of 𝜙𝑚 contributes𝑂 (sup𝛼/𝛽).
The baseline estimator 𝑐 (𝑚) is a standard Robbins-Monro average-cost estimator, producing an

analogous 𝑂 (𝜌max) term. The 𝑂 (𝐶mix𝜌
𝑏) term is exactly the burn-in bias from Lemma 1. □

Lemma 3 (Gate regret against a piecewise-constant in-class selector). Let𝑔𝑡 (·) be the post-projection
distribution. For the comparator sequence𝑚ic

𝑡 ≡𝑚ic

𝑘
for 𝑡 ∈ I𝑘 , we have∑︁𝑇

𝑡=1

∑︁𝑀

𝑚=1

𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) −
∑︁𝑇

𝑡=1

ℓ𝑡 (𝑚ic

𝑡 ) ≤ 𝑂
(
𝐶
√︁
𝑇 log𝑀 +𝐶𝑆𝑇 log𝑀

)
. (31)

Lemma 3 shows that the gate pays the standard

√︁
𝑇 log𝑀 learning term, plus a switching

overhead proportional to 𝑆𝑇 log𝑀 that accounts for re-concentrating after regime changes. This is

the precise formalization of the “switching overhead” discussed in design idea D2/D5. We provide

the proof sketch for Lemma 3 below, and please see Appendix I for the complete proof.

Proof sketch. Fixed-share Hedge is a standard reduction from switching comparators to a mixture

of restarted Hedge instances. One obtains a dynamic-regret bound against piecewise-constant

expert sequences with 𝑆𝑇 switches, i.e., a

√︁
𝑇 log𝑀 term from within-segment learning plus an

additive 𝑆𝑇 log𝑀 term from the share/restart mechanism. Scaling by the loss range𝐶 yields (31). □
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Lemma 4 (Regret Decomposition). Let Reg(𝑇 ) be the tracking regret in (4). Under bounded costs,
we have

Reg(𝑇 ) ≤ 𝜅1Reg
gate
(𝑇 ) + Reg

AC
(𝑇 ) + Reg

switch
(𝑇 ) +𝑇 · Approx𝜋 +𝑇 · Approx𝑉 , (32)

where
• Reg

gate
(𝑇 ) ≜ ∑𝑇

𝑡=1

∑
𝑚 𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) −

∑𝑇
𝑡=1

ℓ𝑡 (𝑚ic

𝑡 ) is controlled by Lemma 3;
• Reg

AC
(𝑇 ) is the within-expert learning error caused by imperfect advantage surrogates and slow

actor updates, controlled by Lemma 2 and standard average-cost policy-gradient arguments;
• Reg

switch
(𝑇 ) is the transient cost incurred in the first𝑂 (𝑡mix) steps after each switch, before the state

distribution re-mixes and critic/baseline estimates re-center;
• Approx𝜋 is the policy-class gap defined in (24);
• Approx𝑉 is the critic function-approximation bias.

Lemma 4 pins each term in the final bound to a concrete design component, including gating

controls Reg
gate

, per-expert critics control Reg
AC

, and mixing controls Reg
switch

. The impossibility

results imply that without a mechanism reducing Reg
gate

, i.e., the multi-modal representation and

selection, one cannot generally achieve Reg(𝑇 ) = 𝑜 (𝑇 ). We provide the proof sketch for Lemma 4

below, and please see Appendix J for the complete proof.

Proof sketch. Add and subtract the in-class selector and the regime-optimal benchmark:

Reg(𝑇 ) =
(
𝐶𝑇 (𝜋) −𝐶𝑇 (in-class selector)

)︸                                    ︷︷                                    ︸
learn+gate+transients

+
(
𝐶𝑇 (in-class selector) −𝐶∗𝑇

)︸                               ︷︷                               ︸
≤ 𝑇Approx𝜋

. (33)

The first bracket is controlled by calibrating instantaneous excess cost by TD-losses, bounding

gate dynamic regret, bounding critic/baseline tracking error within segments, and charging at

most 𝑐max𝑡mix per switch for burn-in/mixing transients. The critic approximation bias contributes

𝑇Approx𝑉 . □

Theorem 5 (Tracking regret for RA-MoE-AC). Under Assumption 1 and Assumption 2, the full-
information RA-MoE-AC variant satisfies

Reg(𝑇 ) ≤𝑂
(
𝜅1𝐶

√︁
𝑇 log𝑀 + 𝜅1𝐶𝑆𝑇 log𝑀

)
+ 𝑂̃

(√
𝑇

)
+𝑂 (𝑐max𝑆𝑇 𝑡mix) +𝑇 (Approx𝜋 + Approx𝑉 ).

(34)

In particular, if 𝑆𝑇 = 𝑜 (𝑇 ) and Approx𝜋 + Approx𝑉 = 𝑜 (1), then Reg(𝑇 )/𝑇 → 0.

The bound in Theorem 5 decomposes into four important parts: (i) regime inference cost√︁
𝑇 log𝑀 + 𝑆𝑇 log𝑀 ; (ii) within-regime learning cost that is sublinear in 𝑇 under timescale sepa-

ration; (iii) post-switch mixing/transient cost 𝑡mix per switch; (iv) irreducible approximation bias

from policy classes. This matches the qualitative lessons of Impossibility I that without multiple

experts and a gate, the selection term cannot be sublinear in general. We provide the proof sketch

for Theorem 5 below, and please see Appendix K for the complete proof.

Proof sketch. Start from Lemma 4. Bound Reg
gate
(𝑇 ) by Lemma 3. Bound Reg

AC
(𝑇 ) using Lemma 2

to control baseline/critic tracking error and standard average-cost actor-critic analysis to convert

advantage estimation error into cumulative performance loss, yielding a 𝑂̃ (
√
𝑇 ) term under the

two-timescale stepsizes. Bound Reg
switch

(𝑇 ) by charging at most 𝑂 (𝑐max𝑡mix) per switch (burn-in

until near-stationarity). Add approximation terms 𝑇Approx𝜋 and 𝑇Approx𝑉 . □

Remark 3 (selected-expert-only variants). If one updates critics/actors only for the sampled expert

and/or uses bandit losses (e.g., EXP3-style importance weighting), then (34) holds with the standard
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additional factors, either an explicit exploration-floor assumption ensuring each expert is sampled

often enough within each segment, or an importance-weighting variance term (typically yielding a√
𝑀 factor in the gating bound). All other components remain unchanged.

Theorem 6 (Stability under safety projection). Let 𝑔𝑡 (𝑚safe) ≥ 𝑝min > 0 for all 𝑡 . Then, the queue
component 𝑄𝑡 is strongly stable. In particular, there exist constants 𝐵 < ∞ and 𝜖 > 0, such that for the
Lyapunov function 𝐿(𝑄) = 1

2
∥𝑄 ∥2

2
, we have

E[𝐿(𝑄𝑡+1) − 𝐿(𝑄𝑡 ) | 𝑄𝑡 ] ≤ 𝐵 − 𝜖 ∥𝑄𝑡 ∥1, (35)

and hence

lim sup𝑇→∞
1

𝑇

∑︁𝑇

𝑡=1

E[∥𝑄𝑡 ∥1] ≤
𝐵

𝜖
. (36)

Theorem 6 operationalizes the key message of Impossibility II. That is, queueing mismatch can

be catastrophic, so stability should be enforced by design. Safety projection yields a regime-agnostic

stability floor, while Theorem 5 quantifies efficiency loss relative to the regime-aware benchmark

within that stable envelope. Please see Appendix L for the complete proof of Theorem 6.

7 Numerical Results
We evaluate RA-MoE-AC (Algorithm 1) on the queueing system instantiation in Section 3.4.1 and

focus on two questions aligned with our theory, i.e., switch tracking relative to the regime-aware

benchmark and stability in queueing instantiations under latent regime mismatch. We compare

three methods, RA-MoE-AC, single-expert actor-critic (Single-AC, i.e., the same actor-critic update

but with one expert and no regime selection), and Safe-only (always deploy the stabilizing baseline

𝜋safe). All methods share the same policy and critic parameterizations when applicable. The only

difference is whether the agent can represent and select multiple regime-specialized behaviors.

We report time-average cost 𝑉𝑇 (𝜋) = 1

𝑇

∑𝑇
𝑡=1
𝑐𝑡 , average tracking regret Reg(𝑇 )/𝑇 in (4), esti-

mated by simulating the regime-aware benchmark with oracle regime labels, and queueing stability

statistics
1

𝑇

∑𝑇
𝑡=1

E∥𝑄𝑡 ∥1 and max𝑡≤𝑇 ∥𝑄𝑡 ∥1. Due to page limits, all concrete simulation values

(horizon, switch schedule, arrivals/channels, feature maps, stepsizes, and 𝑝min) are provided in

Appendix A. Additional experiments (ablations and scaling studies) are deferred to Appendix B.

7.1 Switch Tracking and Regime Inference
Figure 1 visualizes regime tracking on the queueing instantiation. The left figure plots the smoothed

instantaneous cost, and the right figure plots the gate probabilities 𝑔𝑡 (𝑚) over experts (vertical
dashed lines indicate true switches). RA-MoE-AC exhibits two consistent behaviors across seeds.

First, after each switch, the gate rapidly reallocates probability mass from the previously preferred

expert to the expert that is compatible with the new segment. Second, this reallocation coincides

with a prompt recovery in per-slot cost. In contrast, Single-AC (𝑀 = 1) cannot express segment-

specific behavior. It adapts slowly and incurs elevated cost after switches. Safe-only remains stable

but is suboptimal in cost because it does not exploit benign regimes (it pays a persistent conservatism

premium). These observations match the mechanism suggested by our analysis.

7.2 Stability and Backlog Behavior inQueueing
Figure 2 plots the queue backlog evolution. Single-AC can suffer sustained mismatch in segments

where its learned service allocation is misaligned with the active regime, which yields persistent

service deficit and backlog growth. RA-MoE-AC avoids this failure because the gate can switch to

the appropriate expert, and because the safety projection enforces a nontrivial minimum usage

of a stabilizing expert, which prevents catastrophic excursions even when the gate is temporarily
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Fig. 1. Switch tracking in the queueing instantiation. Left: smoothed
instantaneous cost. Right: gate probabilities for RA-MoE-AC. Ver-
tical dashed lines mark true regime switches. RA-MoE-AC rapidly
reallocates probability mass after each switch and correspondingly
stabilizes the cost trajectory, while Single-AC exhibits larger and
longer post-switch cost transients, and Safe-only incurs a higher cost
level.

Fig. 2. Backlog and stability in the
queueing instantiation. RA-MoE-AC
maintains stable backlog with small
post-switch transients, while Single-
AC can exhibit large backlog excur-
sions under regime mismatch. Safe-
only remains stable.

Table 1. Summary metrics (mean ± standard error). RA-MoE-AC improves time-average cost and tracking
regret relative to Single-AC, while remaining stability. Safe-only is stable but conservative.

Method 𝑉𝑇 (𝜋) Reg(𝑇 )/𝑇 1

𝑇

∑𝑇
𝑡=1

E∥𝑄𝑡 ∥1 max𝑡≤𝑇 ∥𝑄𝑡 ∥1
RA-MoE-AC (Alg. 1) 0.9541 ± 0.0049 0.1081 ± 0.0060 6.89 ± 0.28 33.66 ± 1.38

Single-AC (𝑀 = 1) 7.5186 ± 0.2532 6.6727 ± 0.2513 340.73 ± 12.66 577.28 ± 20.41

Safe-only (𝜋safe) 1.7437 ± 0.0009 0.8977 ± 0.0021 1.25 ± 0.05 15.19 ± 0.67

uncertain. Safe-only remains stable by design, but yields larger average cost because it does not

adapt service to the regime-dependent cost tradeoff (Figure 1). Overall, the backlog trajectories

provide direct empirical support for our key systems claim.

7.3 Summary metrics
Table 1 summarizes the main numerical outcomes. RA-MoE-AC achieves the best overall efficiency-

stability tradeoff. It improves time-average cost relative to Safe-only while preventing backlog blow-

ups that can occur under Single-AC. We emphasize that these are not tuned-to-win comparisons,

since all methods share the same parameterization and step-sizes, and we only vary whether the

agent can represent and select multiple regime-specialized experts (and whether safety is enforced).

8 Conclusion
We studied regime-switching MDPs for performance-critical systems with latent mode changes.

We show that even under benign dynamics and slow switching, any single stationary actor-critic

can be misaligned with a regime-aware benchmark, and in queueing instantiations mismatch can

break stability. Motivated by this, we proposed RA-MoE-AC with TD-residual-driven gating, per-

expert critics with timescale separation, and a lightweight safety projection enforcing a stabilizing

baseline. We prove switching-aware tracking bounds scaling with the number of switches and

mixing time, and strong stability under safety projection. Empirically, RA-MoE-AC re-concentrates

after switches, improves cost over conservative baselines, and avoids backlog blow-ups.
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A Simulation Setup and Hyperparameters
A.1 Common Protocol
Horizon and switching. We run each method for horizon 𝑇 = 6000 with 𝑆𝑇 = 3 switches and

minimum segment length 𝐿min = 1500. Switch times are 𝜏0 = 1, 𝜏1 = 1501, 𝜏2 = 3001, 𝜏3 = 4501,

and 𝜏𝑆𝑇 +1 =𝑇 + 1 = 6001. Unless stated otherwise, we use equal-length segments 𝐿𝑘 = 1500 and

alternate regimes as 𝑧𝑘 = 1 for 𝑘 ∈ {1, 3} and 𝑧𝑘 = 2 for 𝑘 ∈ {2, 4}.

Number of experts and safe expert. We use𝑀 = 3 experts, where experts𝑚 ∈ {1, 2} are learned
and expert𝑚safe = 3 is a fixed stabilizing baseline. The safety projection enforces 𝑔𝑡 (𝑚safe) ≥ 𝑝min

with 𝑝min = 0.05.

Seeds and confidence. We use 𝑁seed = 20 random seeds and report mean ± one standard error.

Time-series figures are smoothed using a moving average window of size 75.

Oracle regime-aware benchmark for regret. To estimate Reg(𝑇 ) in (4), we simulate the benchmark

that applies 𝜋∗,(𝑧 ) on each segment using oracle regime labels. For each regime 𝑧 ∈ {1, 2}, we
approximate 𝜋∗,(𝑧 ) by running the same actor–critic update with the regime held fixed at 𝑧 for 2×10

5

steps (using the same policy/value parameterization as the learned agents), and then deploying the

resulting stationary policy whenever 𝑧𝑡 = 𝑧. This yields a fair in-class regime-aware benchmark.
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Table 2. Key notation.

Symbol Meaning

𝑧𝑡 ∈ Z latent regime (piecewise constant)

𝑆𝑇 number of regime switches up to time 𝑇

𝐿min minimum segment length

𝑠𝑡 ∈ S system state (e.g., queues + exogenous variables)

𝑎𝑡 ∈ A control action

𝑃 (𝑧 ) transition kernel under regime 𝑧

𝑐 (𝑧 ) instantaneous cost under regime 𝑧

𝑐max uniform upper bound on per-slot cost

𝜋
(𝑚)
𝜙𝑚

expert𝑚 actor (policy)

𝑔𝜃 (· | 𝑠) gating distribution over experts

𝐺𝜋 bound on expert policy score ∥∇𝜙𝑚 log𝜋
(𝑚)
𝜙𝑚
(𝑎 | 𝑠)∥

𝐺𝑔 bound on gate score ∥∇𝜃 log𝑔𝜃 (𝑚 | 𝑠)∥
Reg(𝑇 ) tracking regret against regime-aware benchmark

𝑡mix (uniform) mixing time within a regime

A.2 Queueing System Instantiation
Dynamics. We simulate a two-queue single-server system (a standard extension of Section 3.4.1

used to expose regime-mismatch instability). The state is 𝑠𝑡 = (𝑄𝑡,1, 𝑄𝑡,2) with𝑄𝑡,𝑖 ∈ R+. The action
is 𝑎𝑡 ∈ {0, 1, 2}, where 𝑎𝑡 = 0 means idle and 𝑎𝑡 = 𝑖 means serve queue 𝑖 . Service is one packet when
nonempty, i.e.,

𝑄𝑡+1,𝑖 =

[
𝑄𝑡,𝑖 +𝐴 (𝑧𝑡 )𝑡,𝑖

− 1{𝑎𝑡 = 𝑖}
]+
, 𝑖 ∈ {1, 2}. (37)

Hence 𝜇max = 1. Arrivals are independent Bernoulli:

𝐴
(𝑧 )
𝑡,𝑖
∼ Bernoulli(𝜆 (𝑧 )

𝑖
), (38)

with regime-dependent rates

(𝜆 (1)
1
, 𝜆
(1)
2
) = (0.85, 0.25), (𝜆 (2)

1
, 𝜆
(2)
2
) = (0.25, 0.85), (39)

so that the identity of the bottleneck queue swaps across regimes.

Cost. We use a backlog-energy objective

𝑐 (𝑧 ) (𝑄, 𝑎) =𝑤 (𝑄1 +𝑄2) + 𝜅 (𝑧 ) 1{𝑎 ≠ 0}, (40)

with𝑤 = 0.01 and energy-price coefficients

𝜅 (1) = 0.02, 𝜅 (2) = 0.20. (41)

Thus, serving is cheap in regime 1 and expensive in regime 2, creating different cost-stability

tradeoffs across segments.

Policy and critic parameterization. Each learned expert uses a softmax policy over {0, 1, 2} with
linear action scores, i.e.,

𝜋
(𝑚)
𝜙𝑚
(𝑎 | 𝑠) ∝ exp

(
𝑢
(𝑚)
𝑎 (𝑠)

)
, 𝑢
(𝑚)
𝑎 (𝑠) = (𝜙 (𝑚)𝑎 )⊤𝜑𝑎 (𝑠), (42)
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where 𝜑𝑎 (𝑠) = [1, 𝑄̃1, 𝑄̃2]⊤ and 𝑄̃𝑖 = min{𝑄𝑖/50, 1}. Per-expert critics are linear, i.e.,

𝑉
(𝑚)
𝑤𝑚
(𝑠) =𝑤⊤𝑚𝜓 (𝑠),𝜓 (𝑠) = [1, 𝑄̃1, 𝑄̃2, 𝑄̃

2

1
, 𝑄̃2

2
]⊤. (43)

Gate parameterization. We use a softmax gate

𝑔𝜃 (𝑚 | 𝑠) ∝ exp(𝜃⊤𝑚𝜑𝑔 (𝑠)), 𝜑𝑔 (𝑠) = [1, 𝑄̃1, 𝑄̃2, 𝑄̃1 − 𝑄̃2]⊤ . (44)

Safe expert. We embed a stabilizing MaxWeight-style baseline as expert𝑚safe = 3, i.e.,

𝜋safe : 𝑎𝑡 =

{
arg max𝑖∈{1,2} 𝑄𝑡,𝑖 , if 𝑄𝑡,1 +𝑄𝑡,2 > 0,

0, otherwise.

(45)

This baseline satisfies the drift condition in Theorem 6 for the simulated primitives, and the safety

projection enforces its minimum usage probability.

A.3 RA-MoE-AC Updates and Hyperparameters

TD residual and gate loss. We use the average-cost TD residual 𝛿
(𝑚)
𝑡 = 𝑐𝑡 − 𝑐 (𝑚) +𝑉 (𝑚)𝑤𝑚

(𝑠𝑡+1) −
𝑉
(𝑚)
𝑤𝑚
(𝑠𝑡 ) and define the gate loss

ℓ𝑡 (𝑚) = clip

(
(𝛿 (𝑚)𝑡 )2, 0, 𝐶

)
and 𝐶 = 10. (46)

Step-sizes and timescales. We use constant step-sizes (stable finite-horizon behavior):

𝛽 = 0.05, 𝜂 = 0.02, 𝛼 = 0.005, and 𝜌 = 0.02. (47)

We project policy and gate parameters onto ℓ∞ balls of radius 5 to enforce bounded scores.

B Additional Numerical Results
This appendix reports additional experiments that stress-test RA-MoE-AC beyond the basic compar-

isons in the main paper. Unless stated otherwise, we use the same environments, horizons, switching

patterns, hyperparameters, and reporting protocol as in Appendix A. We report mean ± one stan-

dard error over 𝑁seed seeds for time-average cost 𝑉𝑇 (𝜋), tracking regret Reg(𝑇 )/𝑇 against the

oracle regime-aware benchmark, average backlog
1

𝑇

∑𝑇
𝑡=1

E∥𝑄𝑡 ∥1, and peak backlog max𝑡≤𝑇 ∥𝑄𝑡 ∥1
(queueing system instantiations). When plotting time series, we use the same smoothing window

as in Appendix A.

B.1 Ablations: Which Mechanism Matters?
Figure 3 summarizes ablations on the gating signal, timescale separation, and the safety projection.

Gate signal ablation. We isolate the role of the gating feedback by changing only the gate loss

ℓ𝑡 (𝑚) while keeping experts, critics, step-sizes, and safety projection unchanged. We compare

TD-residual losses (ours) to cost-only losses, advantage-only losses, and entropy-regularized cost

losses. We report time-to-reconcentrate after each switch (time until max𝑚 𝑔𝑡 (𝑚) ≥ 0.8) and post-

switch transient cost (area under the excess-cost curve over a fixed window). TD-residual losses

consistently yield faster re-concentration and smaller post-switch transients.

Timescale separation ablation. We sweep (𝛼, 𝜂, 𝛽) to violate the intended ordering (critic fast,

gate intermediate, actor slow), changing only step-sizes and keeping all other components fixed.

We report switching-transient cost and backlog peaks. When the critic is not the fastest component,

value estimates lag the segment-wise fixed point, TD residuals become noisy, and the gate oscillates,

increasing both cost and post-switch backlog spikes.
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Fig. 3. Ablations. Left: gating loss variants (re-concentration and transient cost). Middle: step-size sweeps
showing the role of timescale separation. Right: safety projection sweeps.

Fig. 4. Switching-frequency scaling. Tracking regret, transient cost, and backlog statistics versus 𝑆𝑇 (and
induced 𝐿min).

Safety projection sweep. We sweep 𝑝min ∈ {0, 0.01, 0.03, 0.05, 0.10} (changing only the projection

constraint) to quantify the conservatism–risk tradeoff. Larger 𝑝min improves robustness (smaller

peak backlog and fewer rare excursions) at the price of a mild increase in time-average cost. Setting

𝑝min = 0 can improve cost in benign segments but may allow catastrophic backlog excursions under

prolonged gate uncertainty.

B.2 Scaling with Switching Frequency and Segment Length
We vary the number of switches 𝑆𝑇 while holding the horizon𝑇 fixed, using equal-length segments

(so 𝐿min =𝑇 /(𝑆𝑇+1)) and the same alternating-regime pattern as in themain experiments.We report

Reg(𝑇 )/𝑇 , post-switch transient cost (fixed window after each 𝜏𝑘 ), and backlog statistics. The trends

in Figure 4 match the decomposition suggested by Theorem 5. That is, performance degrades as 𝑆𝑇
increases (more frequent re-inference and more transients), and improves as segments lengthen

relative to per-regime mixing.
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Table 3. Additional baselines (mean ± s.e.). Oracle regime-aware selection and QCD+AC variants.

Method 𝑉𝑇 (𝜋) Reg(𝑇 )/𝑇 1

𝑇

∑
𝑡 E∥𝑄𝑡 ∥1 max𝑡≤𝑇 ∥𝑄𝑡 ∥1

Oracle regime-aware selector 0.6969 ± 0.0009 -0.0024 ± 0.0001 3.2326 ± 0.0275 18.8566 ± 0.5542

QCD+AC (reset on detection) 1.1342 ± 0.0421 0.4350 ± 0.0420 15.7246 ± 0.8973 73.3400 ± 2.1504

B.3 Additional Baselines in Table 3: Oracle and QCD-Style Switching
Oracle regime-aware selector. We include an oracle selector that observes 𝑧𝑡 and always chooses

the in-class best expert for that regime, i.e.,𝑚𝑡 = arg min𝑚 𝐽 (𝑧𝑡 ) (𝜋 (𝑚) ) (ties broken arbitrarily).

This isolates the performance loss due to imperfect online regime inference. Regret is estimated by

Monte Carlo with an in-class regime-aware benchmark. Thus, small negative values may occur

due to sampling error of the benchmark.

Quick change detection (QCD) with AC. We include a detect-then-adapt baseline that runs a

standard change detector on a scalar stream (we use the selected expert’s TD-residual squared

loss), and upon detection resets the actor-critic state (critic weights and average-cost baseline) and

restarts learning with a fixed exploration floor. This baseline separates explicit detection and reset

from continuous online gating.

C Proof of Theorem 1
Proof. Fix an arbitrary stationary randomized policy 𝜋 . Since 𝜋 is stationary and the state space

is {𝑠0, 𝑠1}, define

𝑝 ≜ 𝜋 (𝑎+ | 𝑠0) ∈ [0, 1] and 𝜋 (𝑎− | 𝑠0) = 1 − 𝑝.

We do not need to define 𝜋 (· | 𝑠1) because costs at 𝑠1 are always zero.

C.1 Step 1: The state 𝑠0 is visited exactly ⌊𝑇 /2⌋ times
By construction, the dynamics are deterministic and regime-independent: 𝑠𝑡+1 = 𝑠1 if 𝑠𝑡 = 𝑠0 and

𝑠𝑡+1 = 𝑠0 if 𝑠𝑡 = 𝑠1. Thus the chain alternates between the two states, regardless of the action choices.

Assuming 𝑠1 is the unique successor of 𝑠0 and vice versa, the trajectory satisfies

𝑠1, 𝑠0, 𝑠1, 𝑠0, . . . or 𝑠0, 𝑠1, 𝑠0, 𝑠1, . . .

depending only on the initial state. In either case, among the first 𝑇 time indices, the number of

visits to 𝑠0 is exactly ⌊𝑇 /2⌋. Denote this number by

𝑁0 (𝑇 ) ≜
𝑇∑︁
𝑡=1

1{𝑠𝑡 = 𝑠0} =
⌊𝑇

2

⌋
. (48)

C.2 Step 2: Expected cumulative cost under a fixed regime
Consider first the case where the regime is constant over the entire horizon, i.e., 𝑧𝑡 ≡ 𝑧 ∈ {1, 2}.
Because costs at 𝑠1 are always 0, only visits to 𝑠0 contribute.

C.2.1 In regime 1. At state 𝑠0, action 𝑎
+
costs 0 and action 𝑎− costs 1. Therefore, conditioned on

𝑠𝑡 = 𝑠0,

E
[
𝑐 (1) (𝑠𝑡 , 𝑎𝑡 ) | 𝑠𝑡 = 𝑠0

]
= 0 · 𝜋 (𝑎+ | 𝑠0) + 1 · 𝜋 (𝑎− | 𝑠0) = 1 − 𝑝. (49)
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C.2.2 In regime 2. The roles swap, and conditioned on 𝑠𝑡 = 𝑠0,

E
[
𝑐 (2) (𝑠𝑡 , 𝑎𝑡 ) | 𝑠𝑡 = 𝑠0

]
= 1 · 𝜋 (𝑎+ | 𝑠0) + 0 · 𝜋 (𝑎− | 𝑠0) = 𝑝. (50)

Since the event {𝑠𝑡 = 𝑠0} is deterministic given 𝑡 (Step 1), by linearity of expectation we obtain

E

[
𝑇∑︁
𝑡=1

𝑐 (1) (𝑠𝑡 , 𝑎𝑡 )
]
=

𝑇∑︁
𝑡=1

E
[
𝑐 (1) (𝑠𝑡 , 𝑎𝑡 )

]
=

𝑇∑︁
𝑡=1

1{𝑠𝑡 = 𝑠0} (1 − 𝑝) = 𝑁0 (𝑇 ) (1 − 𝑝),

E

[
𝑇∑︁
𝑡=1

𝑐 (2) (𝑠𝑡 , 𝑎𝑡 )
]
=

𝑇∑︁
𝑡=1

1{𝑠𝑡 = 𝑠0}𝑝 = 𝑁0 (𝑇 )𝑝. (51)

C.3 Step 3: Benchmark cost is identically zero
By definition, the regime-aware benchmark 𝜋∗𝑡 chooses the zero-cost action at 𝑠0 for the active

regime: it chooses 𝑎+ when 𝑧𝑡 = 1 and 𝑎− when 𝑧𝑡 = 2. At 𝑠1, both actions have cost 0. Hence, for

every time 𝑡 , the incurred cost under 𝜋∗𝑡 is 0, and therefore

𝐶∗𝑇 ≜ E

[
𝑇∑︁
𝑡=1

𝑐 (𝑧𝑡 ) (𝑠𝜋∗𝑡 , 𝑎𝜋
∗

𝑡 )
]
= 0, (52)

for any regime sequence {𝑧𝑡 }.

C.4 Step 4: Choose a piecewise-constant regime sequence that maximizes the loss of 𝜋
Define a constant (hence piecewise-constant) regime sequence as follows:

𝑧𝑡 ≡
{

1, if 1 − 𝑝 ≥ 𝑝,
2, if 𝑝 > 1 − 𝑝.

Equivalently, choose the regime 𝑧 that makes 𝜋 ’s expected cost at 𝑠0 equal to max{𝑝, 1 − 𝑝}.
Under this regime sequence, combining Steps 2 and 3,

Reg(𝑇 ) =𝐶𝑇 (𝜋) −𝐶∗𝑇 =𝐶𝑇 (𝜋) ≥ 𝑁0 (𝑇 )max{𝑝, 1 − 𝑝} =
⌊
𝑇

2

⌋
max{𝑝, 1 − 𝑝}. (53)

Finally, since max{𝑝, 1 − 𝑝} ≥ 1

2
for all 𝑝 ∈ [0, 1], we obtain the universal bound

Reg(𝑇 ) ≥
⌊
𝑇

2

⌋
· 1

2

≥ 𝑇
4

− 1

2

. (54)

This implies Reg(𝑇 ) = Ω(𝑇 ) and Reg(𝑇 )/𝑇 = Ω(1).
□

D Proof of Theorem 2
Proof. Fix any stationary randomized policy 𝜋 and any 𝐿min ≥ 1. Let 𝑝 = 𝜋 (𝑎+ | 𝑠0). As in the

proof of Theorem 1, the regime-aware benchmark incurs zero cost at all times, so for any admissible

regime sequence {𝑧𝑡 },

Reg(𝑇 ) =𝐶𝑇 (𝜋) −𝐶∗𝑇 =𝐶𝑇 (𝜋). (55)

We show that there exists an admissible piecewise-constant regime sequence (with minimum

segment length 𝐿min) under which 𝐶𝑇 (𝜋) grows linearly in 𝑇 .
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D.1 Case (i): no switching
Choose 𝑧𝑡 ≡ 𝑧 constant for all 𝑡 = 1, . . . ,𝑇 , where 𝑧 ∈ {1, 2} is selected as in Theorem 1 to maximize

𝜋 ’s expected cost at 𝑠0. This regime sequence has 𝑆𝑇 = 0 and a single segment of length 𝑇 , hence it

satisfies the minimum segment length constraint for any 𝐿min ≤ 𝑇 . By Theorem 1,

Reg(𝑇 ) =𝐶𝑇 (𝜋) ≥
⌊𝑇

2

⌋
max{𝑝, 1 − 𝑝} ≥ 𝑇

4

− 1

2

= Ω(𝑇 ). (56)

D.2 Case (ii): switching with segment length exactly 𝐿min

Assume 𝑇 is a multiple of 2𝐿min (as stated in (16)) and set 𝐾 ≜ 𝑇
𝐿min

as an even integer. Partition the

horizon into 𝐾 consecutive segments of length 𝐿min:

I𝑘 ≜ {(𝑘 − 1)𝐿min + 1, . . . , 𝑘𝐿min}, for 𝑘 = 1, . . . , 𝐾 . (57)

Define a piecewise-constant regime sequence by alternating regimes:

𝑧𝑡 =

{
1, 𝑡 ∈ I𝑘 with 𝑘 odd,

2, 𝑡 ∈ I𝑘 with 𝑘 even.
(58)

Every segment has length exactly 𝐿min, so the minimum segment length constraint is satisfied.

D.2.1 Step 1: within each segment, 𝑠0 is visited at least ⌊𝐿min/2⌋ times. Because the state alternates
deterministically between 𝑠0 and 𝑠1 at every time step, in any consecutive block of length 𝐿min, the

number of indices 𝑡 with 𝑠𝑡 = 𝑠0 is either ⌊𝐿min/2⌋ or ⌈𝐿min/2⌉, depending on the parity of the block

start. In particular, it is always at least ⌊𝐿min/2⌋. We define 𝑁0,𝑘 ≜
∑
𝑡 ∈I𝑘 1{𝑠𝑡 = 𝑠0}, then we have

𝑁0,𝑘 ≥
⌊𝐿min

2

⌋
, for all 𝑘 = 1, . . . , 𝐾 . (59)

D.2.2 Step 2: expected cost per segment. In a segment with regime 1, each visit to 𝑠0 contributes

expected cost 1 − 𝑝 ; in a segment with regime 2, each visit contributes expected cost 𝑝 . Costs at 𝑠1

are always 0. Therefore,

E


∑︁
𝑡 ∈I𝑘

𝑐 (𝑧𝑡 ) (𝑠𝑡 , 𝑎𝑡 )
 =

{
(1 − 𝑝) 𝑁0,𝑘 , 𝑘 odd,

𝑝 𝑁0,𝑘 , 𝑘 even.
(60)

D.2.3 Step 3: sum over alternating segments. Because 𝐾 is even, there are exactly 𝐾/2 odd segments

and 𝐾/2 even segments. Summing the lower bound 𝑁0,𝑘 ≥ ⌊𝐿min/2⌋ and using (1 − 𝑝) + 𝑝 = 1, we

get

Reg(𝑇 ) =𝐶𝑇 (𝜋) = E


𝐾∑︁
𝑘=1

∑︁
𝑡 ∈I𝑘

𝑐 (𝑧𝑡 ) (𝑠𝑡 , 𝑎𝑡 )
 =

𝐾∑︁
𝑘=1

E


∑︁
𝑡 ∈I𝑘

𝑐 (𝑧𝑡 ) (𝑠𝑡 , 𝑎𝑡 )
 (61)

≥
∑︁
𝑘≤𝐾
𝑘 odd

(1 − 𝑝)
⌊𝐿min

2

⌋
+

∑︁
𝑘≤𝐾
𝑘 even

𝑝

⌊
𝐿min

2

⌋
(62)

=
𝐾

2

⌊𝐿min

2

⌋
·
(
(1 − 𝑝) + 𝑝

)
=
𝐾

2

⌊𝐿min

2

⌋
. (63)

Substituting 𝐾 =𝑇 /𝐿min yields

Reg(𝑇 ) ≥ 𝑇

2𝐿min

⌊𝐿min

2

⌋
. (64)
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Using the elementary bound ⌊𝑥⌋ ≥ 𝑥 −1 with 𝑥 = 𝐿min/2, we obtain
⌊
𝐿min

2

⌋
≥ 𝐿min

2
−1, and therefore

Reg(𝑇 ) ≥ 𝑇

2𝐿min

(
𝐿min

2

− 1

)
=

(
1

4

− 1

2𝐿min

)
𝑇, (65)

which matches (16).

Combining cases (i) and (ii), we conclude that for any 𝐿min ≥ 1, there exists an admissible

piecewise-constant regime sequence satisfying the minimum segment length constraint such that

Reg(𝑇 ) = Ω(𝑇 ).
□

E Proof of Theorem 3
We consider a two-queue, single-server, discrete-time system. Let 𝑄𝑡,𝑖 ∈ Z+ denote the backlog of
queue 𝑖 ∈ {1, 2} at the beginning of slot 𝑡 . In each slot, the controller chooses an action 𝑎𝑡 ∈ {1, 2}.
If 𝑄𝑡,𝑎𝑡 > 0, one packet departs from queue 𝑎𝑡 ; otherwise the service opportunity is wasted (the

server idles). Let 𝐴
(𝑧𝑡 )
𝑡,𝑖
∈ {0, 1} denote arrivals to queue 𝑖 during slot 𝑡 under regime 𝑧𝑡 . The queue

dynamics are

𝑄𝑡+1,𝑖 =𝑄𝑡,𝑖 − 𝐷𝑡,𝑖 +𝐴 (𝑧𝑡 )𝑡,𝑖
and 𝐷𝑡,𝑖 ≜ 1{𝑎𝑡 = 𝑖}1{𝑄𝑡,𝑖 > 0}, for 𝑖 ∈ {1, 2}. (66)

We construct arrivals as i.i.d. Bernoulli random variables across time and queues conditioned on

the regime, with means

E[𝐴 (1)
𝑡,1
] = 𝜆𝐻 ,E[𝐴 (1)𝑡,2 ] = 𝜆𝐿 ; and E[𝐴 (2)

𝑡,1
] = 𝜆𝐿,E[𝐴 (2)𝑡,2 ] = 𝜆𝐻 , (67)

where 𝜆𝐻 ∈ (1/2, 1) and 𝜆𝐿 ∈ (0, 1 − 𝜆𝐻 ). This ensures the system is stabilizable in each fixed

regime.

Fixed randomized priority policies. A stationary randomized priority policy with parameter

𝑝 ∈ [0, 1] is defined by

Pr(𝑎𝑡 = 1) = 𝑝 and Pr(𝑎𝑡 = 2) = 1 − 𝑝, for all 𝑡, (68)

independently of the state/history (thus it may waste service when the selected queue is empty).

Proof. We prove the two items in Theorem 3 by explicit construction.

E.1 Item (1): per-regime stabilizability
Fix a regime 𝑧 ∈ {1, 2}. Let (𝜆1, 𝜆2) denote the arrival means under that regime; by (67), (𝜆1, 𝜆2) =
(𝜆𝐻 , 𝜆𝐿) if 𝑧 = 1 and (𝜆1, 𝜆2) = (𝜆𝐿, 𝜆𝐻 ) if 𝑧 = 2. By assumption, 𝜆𝐻 + 𝜆𝐿 < 1.

Consider the following work-conserving stationary policy 𝜋wc,(𝑧 )
:

• if exactly one queue is nonempty, serve the nonempty queue;

• if both queues are nonempty, serve queue 𝑖 with probability 𝛼𝑖 , where 𝛼1, 𝛼2 > 0, 𝛼1 + 𝛼2 = 1,

and 𝛼𝑖 > 𝜆𝑖 for both 𝑖 = 1, 2.

Such (𝛼1, 𝛼2) exist because 𝜆1 + 𝜆2 < 1; for example, choose 𝛼𝑖 = 𝜆𝑖 + 1−(𝜆1+𝜆2 )
2

.

Let 𝑉𝑡 ≜ 𝑄𝑡,1 +𝑄𝑡,2. Under a work-conserving policy, whenever 𝑉𝑡 > 0 the server necessarily

serves one packet from a nonempty queue, so the total departure satisfies 𝐷𝑡,1 + 𝐷𝑡,2 = 1. When

𝑉𝑡 = 0, we have 𝐷𝑡,1 + 𝐷𝑡,2 = 0. Summing (66) over 𝑖 ∈ {1, 2} gives

𝑉𝑡+1 −𝑉𝑡 = (𝐴 (𝑧 )𝑡,1 +𝐴
(𝑧 )
𝑡,2
) − (𝐷𝑡,1 + 𝐷𝑡,2) = (𝐴 (𝑧 )𝑡,1 +𝐴

(𝑧 )
𝑡,2
) − 1{𝑉𝑡 > 0}. (69)

Taking conditional expectation given 𝑉𝑡 yields

E[𝑉𝑡+1 −𝑉𝑡 | 𝑉𝑡 ] = (𝜆1 + 𝜆2) − 1{𝑉𝑡 > 0} ≤ −𝜖 · 1{𝑉𝑡 > 0}, (70)
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where 𝜖 ≜ 1− (𝜆1 + 𝜆2) > 0. Thus, for all states with𝑉𝑡 > 0, the drift of𝑉𝑡 is uniformly negative by

at least 𝜖 . By a standard Foster–Lyapunov criterion for countable-state Markov chains (using 𝑉 as

a Lyapunov function), this implies positive recurrence of {(𝑄𝑡,1, 𝑄𝑡,2)} under regime 𝑧 and hence

strong stability (13). Therefore, each fixed regime is stabilizable by a stationary policy.

E.2 Item (2): impossibility for fixed randomized priorities under switching
Fix an arbitrary 𝑝 ∈ [0, 1] and consider the fixed priority policy (68). We show that there exists a

piecewise-constant regime sequence for which the system is not strongly stable. Define the “bad”

regime for this 𝑝 as

𝑧bad (𝑝) ≜
{

1, if 𝑝 < 𝜆𝐻 ,

2, otherwise.
(71)

This choice is always valid because if 𝑝 ≥ 𝜆𝐻 , then 1− 𝑝 ≤ 1− 𝜆𝐻 < 𝜆𝐻 (since 𝜆𝐻 > 1/2), so regime

2 makes queue 2 heavy with arrival 𝜆𝐻 but service attempt probability 1 − 𝑝 < 𝜆𝐻 .

Now consider the (piecewise-constant) regime sequence 𝑧𝑡 ≡ 𝑧bad (𝑝) for all 𝑡 . Let 𝑖∗ be the heavy
queue under that regime: 𝑖∗ = 1 if 𝑧bad (𝑝) = 1 and 𝑖∗ = 2 if 𝑧bad (𝑝) = 2. Under the fixed-𝑝 policy,

the action attempt probability for serving queue 𝑖∗ is

𝑠 (𝑝) ≜
{
𝑝, 𝑖∗ = 1,

1 − 𝑝, 𝑖∗ = 2.
(72)

By construction, 𝑠 (𝑝) < 𝜆𝐻 .
From the queue update (66), we always have the inequality

𝑄𝑡+1,𝑖∗ ≥ 𝑄𝑡,𝑖∗ − 1{𝑎𝑡 = 𝑖∗} +𝐴 (𝑧bad
(𝑝 ) )

𝑡,𝑖∗ . (73)

Indeed, when 𝑄𝑡,𝑖∗ > 0, the departure is exactly 1{𝑎𝑡 = 𝑖∗}; when 𝑄𝑡,𝑖∗ = 0, the true departure is 0

and thus subtracting 1{𝑎𝑡 = 𝑖∗} only makes the right-hand side smaller, so the inequality holds.

Taking expectation of (73) conditional on𝑄𝑡,𝑖∗ and usingE[1{𝑎𝑡 = 𝑖∗}] = 𝑠 (𝑝) andE[𝐴 (𝑧bad
(𝑝 ) )

𝑡,𝑖∗ ] =
𝜆𝐻 , we obtain

E[𝑄𝑡+1,𝑖∗ | 𝑄𝑡,𝑖∗ ] ≥ 𝑄𝑡,𝑖∗ + (𝜆𝐻 − 𝑠 (𝑝)). (74)

Taking total expectation and iterating yields, for all 𝑡 ≥ 1,

E[𝑄𝑡,𝑖∗ ] ≥ E[𝑄1,𝑖∗ ] + (𝑡 − 1) (𝜆𝐻 − 𝑠 (𝑝)). (75)

Since 𝜆𝐻 − 𝑠 (𝑝) > 0, E[𝑄𝑡,𝑖∗ ] grows at least linearly in 𝑡 .

Finally, strong stability (13) fails because

1

𝑇

𝑇∑︁
𝑡=1

E[𝑄𝑡,1 +𝑄𝑡,2] ≥
1

𝑇

𝑇∑︁
𝑡=1

E[𝑄𝑡,𝑖∗ ]
(75)

≥ 1

𝑇

𝑇∑︁
𝑡=1

(𝑡 − 1) (𝜆𝐻 − 𝑠 (𝑝)) =
(𝑇 − 1)

2

(𝜆𝐻 − 𝑠 (𝑝)) −−−−→
𝑇→∞

∞.

(76)

Therefore, the fixed randomized priority policy with parameter 𝑝 is not strongly stable under the

(piecewise-constant) regime sequence 𝑧𝑡 ≡ 𝑧bad (𝑝). This proves item (2) and completes the proof.

□

F Proof of Theorem 4
Proof. Fix 𝑝 ∈ [0, 1] and consider the fixed randomized priority policy (68). Define

𝑠min (𝑝) ≜ min{𝑝, 1 − 𝑝} ∈ [0, 1/2] and 𝛿 (𝑝) ≜ 𝜆𝐻 − 𝑠min (𝑝). (77)

Since 𝜆𝐻 > 1/2, we have 𝛿 (𝑝) ≥ 𝜆𝐻 − 1

2
> 0.
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F.1 Step 1: construct a regime sequence with minimum segment length 𝐿min

Define the “bad” regime as the regime in which the heavy queue is the less frequently attempted
queue under the fixed-𝑝 policy:

𝑧bad ≜

{
1, if 𝑝 ≤ 1/2 (queue 1 is attempted with prob. 𝑝 = 𝑠min (𝑝)),
2, if 𝑝 > 1/2 (queue 2 is attempted with prob. 1 − 𝑝 = 𝑠min (𝑝)).

(78)

Let 𝑖∗ ∈ {1, 2} denote the heavy queue under regime 𝑧bad (so 𝑖
∗ = 1 if 𝑧bad = 1 and 𝑖∗ = 2 if 𝑧bad = 2).

Under the fixed-𝑝 policy, the attempt probability to serve queue 𝑖∗ equals 𝑠min (𝑝).
Now define a piecewise-constant regime process by alternating regimes in segments of length

exactly 𝐿min:

𝑧𝑡 =

{
𝑧bad, 𝑡 ∈ {(2𝑘 − 2)𝐿min + 1, . . . , (2𝑘 − 1)𝐿min},
3 − 𝑧bad, 𝑡 ∈ {(2𝑘 − 1)𝐿min + 1, . . . , 2𝑘𝐿min},

𝑘 = 1, 2, . . . (79)

Every segment has length 𝐿min, hence the minimum segment length constraint is satisfied. The

endpoints of the bad-regime segments occur at times 𝑡𝑘 ≜ (2𝑘 − 1)𝐿min, 𝑘 = 1, 2, . . ., which are

infinitely many regime-segment endpoints.

F.2 Step 2: backlog increase over any bad segment is linear in 𝐿min

Fix any bad segment [𝑡0, 𝑡0 + 𝐿min − 1] in which 𝑧𝑡 = 𝑧bad for all 𝑡 ∈ [𝑡0, 𝑡0 + 𝐿min − 1]. For the heavy
queue 𝑖∗, the same inequality as in (73) holds for every slot in this segment:

𝑄𝑡+1,𝑖∗ ≥ 𝑄𝑡,𝑖∗ − 1{𝑎𝑡 = 𝑖∗} +𝐴 (𝑧bad
)

𝑡,𝑖∗ . (80)

Summing from 𝑡 = 𝑡0 to 𝑡0 + 𝐿min − 1 and telescoping gives

𝑄𝑡0+𝐿min,𝑖
∗ −𝑄𝑡0,𝑖∗ ≥

𝑡0+𝐿min−1∑︁
𝑡=𝑡0

𝐴
(𝑧

bad
)

𝑡,𝑖∗ −
𝑡0+𝐿min−1∑︁
𝑡=𝑡0

1{𝑎𝑡 = 𝑖∗}. (81)

Taking expectation and using E[𝐴 (𝑧bad
)

𝑡,𝑖∗ ] = 𝜆𝐻 and E[1{𝑎𝑡 = 𝑖∗}] = 𝑠min (𝑝), we obtain

E
[
𝑄𝑡0+𝐿min,𝑖

∗ −𝑄𝑡0,𝑖∗
]
≥ (𝜆𝐻 − 𝑠min (𝑝))𝐿min = 𝛿 (𝑝)𝐿min . (82)

Since E[𝑄𝑡0,𝑖∗ ] ≥ 0, (82) implies

E[𝑄𝑡0+𝐿min,𝑖
∗ ] ≥ 𝛿 (𝑝)𝐿min . (83)

F.3 Step 3: infinitely many regime-segment endpoints
Apply (83) to each bad-regime segment. In the constructed regime sequence, the endpoint of the

𝑘-th bad segment is 𝑡𝑘 = (2𝑘 − 1)𝐿min. Thus, for all 𝑘 ≥ 1,

E[𝑄𝑡𝑘 ,𝑖∗ ] ≥ 𝛿 (𝑝)𝐿min. (84)

Therefore,

E[𝑄𝑡𝑘 ,1 +𝑄𝑡𝑘 ,2] ≥ E[𝑄𝑡𝑘 ,𝑖∗ ] ≥ 𝛿 (𝑝)𝐿min, (85)

for infinitely many regime-segment endpoints 𝑡𝑘 . This proves the claimed Θ(𝐿min) lower bound
(with an explicit constant 𝛿 (𝑝) > 0).

The above argument yields a clean bound without an 𝑂 (1) slack because we used the inequality

𝑄𝑡+1,𝑖∗ ≥ 𝑄𝑡,𝑖∗ − 1{𝑎𝑡 = 𝑖∗} + 𝐴𝑡,𝑖∗ , which holds even when the queue is empty and the service

attempt is wasted.

□
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G Proof of Lemma 1
Proof. Fix a regime 𝑧 and a stationary policy 𝜋 . To simplify notation, write 𝑃 ≡ 𝑃

(𝑧 )
𝜋 and

𝜇 ≡ 𝜇 (𝑧 )𝜋 .

G.1 Step 1: Express the distribution of 𝑠𝑡 via the 𝑡−1-step kernel
Conditioned on 𝑠1 = 𝑠 , the distribution of 𝑠𝑡 is given by the (𝑡 − 1)-step transition kernel:

L(𝑠𝑡 | 𝑠1 = 𝑠) = 𝑃𝑡−1(𝑠, ·), (86)

because 𝑃𝑡−1
is the (𝑡 − 1)-fold composition of the one-step kernel 𝑃 . Therefore,

E[𝑓 (𝑠𝑡 ) | 𝑠1 = 𝑠] − E𝑥∼𝜇 [𝑓 (𝑥)] =
∫
S
𝑓 (𝑥)𝑃𝑡−1(𝑠, 𝑑𝑥) −

∫
S
𝑓 (𝑥)𝜇 (𝑑𝑥). (87)

G.2 Step 2: Use the dual characterization of total variation
Define the signed measure 𝜈 ≜ 𝑃𝑡−1(𝑠, ·) − 𝜇. Then, (87) becomes

E[𝑓 (𝑠𝑡 ) | 𝑠1 = 𝑠] − E𝑥∼𝜇 [𝑓 (𝑥)] =
∫
S
𝑓 (𝑥) 𝜈 (𝑑𝑥). (88)

Recall the standard inequality (a consequence of the definition of total variation): for anymeasurable

𝑓 with ∥ 𝑓 ∥∞ ≤ 1, ����∫
S
𝑓 (𝑥) 𝜈 (𝑑𝑥)

���� ≤ 2TV

(
𝑃𝑡−1(𝑠, ·), 𝜇

)
. (89)

For completeness, we justify (89): for any two probability measures 𝛼, 𝛽 on S,
TV(𝛼, 𝛽) ≜ sup

𝐴⊆S
|𝛼 (𝐴) − 𝛽 (𝐴) | , (90)

and one equivalent dual form is

TV(𝛼, 𝛽) =
1

2

sup

∥𝑔∥∞≤1

����∫ 𝑔𝑑 (𝛼 − 𝛽)
���� . (91)

Applying this with 𝛼 = 𝑃𝑡−1(𝑠, ·), 𝛽 = 𝜇, and 𝑔 = 𝑓 gives (89).

G.3 Step 3: Apply the geometric mixing assumption
By (27) with 𝑡 − 1 in place of 𝑡 , we have

TV

(
𝑃𝑡−1(𝑠, ·), 𝜇

)
≤ 𝐶mix𝜌

𝑡−1 . (92)

Combining with (89) yields��E[𝑓 (𝑠𝑡 ) | 𝑠1 = 𝑠] − E𝑥∼𝜇 [𝑓 (𝑥)]
�� ≤ 2𝐶mix 𝜌

𝑡−1, (93)

which is exactly (28).

G.4 Step 4: The 𝜖-burn-in result
If 𝐶mix𝜌

𝑡−1 ≤ 𝜖 , then (28) implies the bias is at most 2𝜖 . This completes the proof.

□

H Proof of Lemma 2
Proof. Fix a segment I𝑘 = {𝜏𝑘−1, . . . , 𝜏𝑘 −1} on which the regime is constant and equal to 𝑧𝑘 ≡ 𝑧.

Fix an expert𝑚 ∈ [𝑀] and, within this proof, suppress the superscript (𝑚) when no confusion

arises. Let F𝑡 be the natural filtration generated by all randomness up to time 𝑡 .
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H.1 Objects, fixed points, and the within-segment “frozen-𝜙” viewpoint

For each time 𝑡 ∈ I𝑘 , denote the expert policy by 𝜋𝑡 (· | 𝑠) ≡ 𝜋 (𝑚)
𝜙
(𝑡 )
𝑚

(· | 𝑠) and the induced Markov

kernel on S (under regime 𝑧) by

𝑃𝑡 (𝑠′ | 𝑠) ≜
∑︁
𝑎∈A

𝜋𝑡 (𝑎 | 𝑠) 𝑃 (𝑧 ) (𝑠′ | 𝑠, 𝑎). (94)

Let 𝜇𝑡 be the stationary distribution of 𝑃𝑡 (existence/uniqueness is guaranteed by Definition 2).

Define the steady-state average cost of 𝜋𝑡 under regime 𝑧 by

𝐽𝑡 ≜ 𝐽 (𝑧 ) (𝜋𝑡 ) = E𝑠∼𝜇𝑡 ,𝑎∼𝜋𝑡 ( · |𝑠 )
[
𝑐 (𝑧 ) (𝑠, 𝑎)

]
. (95)

For the critic, recall the linear differential-value approximation 𝑉𝑤 (𝑠) =𝜓 (𝑠)⊤𝑤 . Under regime 𝑧

and policy 𝜋𝑡 , define the (average-cost) TD feature matrix and vector:

𝐴∗𝑡 ≜ E(𝑠,𝑎,𝑠′ )∼𝜇𝑡×𝜋𝑡×𝑃 (𝑧)
[
𝜓 (𝑠) (𝜓 (𝑠) −𝜓 (𝑠′))⊤

]
, (96)

𝑏∗𝑡 ≜ E(𝑠,𝑎)∼𝜇𝑡×𝜋𝑡
[
(𝐽𝑡 − 𝑐 (𝑧 ) (𝑠, 𝑎))𝜓 (𝑠)

]
. (97)

Assumption 2 (realizability) implies that the projected average-cost Bellman equation has a unique

solution𝑤∗𝑡 (up to an additive constant in the differential value; the linear parameter𝑤∗𝑡 is unique
under the standard convention that removes this constant), equivalently

𝐴∗𝑡𝑤
∗
𝑡 = 𝑏

∗
𝑡 . (98)

Moreover, Assumption 2 yields uniform conditioning, i.e., there exists 𝜆𝐴 > 0 (depending only on

𝜆min and boundedness of𝜓 ) such that

𝜎min (𝐴∗𝑡 ) ≥ 𝜆𝐴 for all 𝑡 ∈ I𝑘 , (99)

and hence ∥(𝐴∗𝑡 )−1∥ ≤ 1/𝜆𝐴 uniformly.

H.2 Full-information critic/baseline updates analyzed in this lemma
Within the segment, we analyze the standard full-information (per-expert) average-cost TD(0)

recursions:

𝑐 (𝑡+1) = (1 − 𝜌𝑡 )𝑐 (𝑡 ) + 𝜌𝑡𝑐𝑡 , (100)

𝑤 (𝑡+1) =𝑤 (𝑡 ) − 𝛽𝑡𝛿𝑡𝜓 (𝑠𝑡 ), (101)

where 𝑐𝑡 = 𝑐
(𝑧 ) (𝑠𝑡 , 𝑎𝑡 ) and the TD residual is

𝛿𝑡 ≜ 𝑐𝑡 − 𝑐 (𝑡 ) +𝜓 (𝑠𝑡+1)⊤𝑤 (𝑡 ) −𝜓 (𝑠𝑡 )⊤𝑤 (𝑡 ) . (102)

(The statement of the lemma concerns the full-information iterates; this recursion is exactly the

per-expert recursion used in the analysis. All constants below are uniform in (𝑧,𝑚).)

H.3 Burn-in and a clean bias bound after mixing
Fix 𝑏 ≥ 1 (to be chosen as 𝑏 = Θ(𝑡mix)). By Lemma 1, for any bounded measurable 𝑓 : S → [−1, 1]
and any 𝑡 ≥ 𝜏𝑘−1 + 𝑏, ���E[𝑓 (𝑠𝑡 ) | F𝜏𝑘−1

] − E𝑠∼𝜇𝜏𝑘−1

[𝑓 (𝑠)]
��� ≤ 2𝐶mix𝜌

𝑏−1. (103)

In particular, for any bounded 𝑔(𝑠, 𝑎, 𝑠′) ∈ [−1, 1], the same bound holds for 𝑔 evaluated along

one-step transitions by applying (103) to the Markov chain on the augmented state space (or by
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conditioning on 𝑠𝑡 and using boundedness); we will use this informally as���E[𝑔(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)] − E(𝑠,𝑎,𝑠′ )∼𝜇𝑡×𝜋𝑡×𝑃 (𝑧) [𝑔(𝑠, 𝑎, 𝑠
′)]

��� ≤ 𝑂 (𝐶mix𝜌
𝑏). (104)

H.4 Tracking of the average-cost baseline 𝑐 (𝑡 )

Define the baseline error

𝑒𝑡 ≜ 𝑐 (𝑡 ) − 𝐽𝑡 . (105)

From (100), we have

𝑒𝑡+1 = 𝑐
(𝑡+1) − 𝐽𝑡+1

= (1 − 𝜌𝑡 )𝑐 (𝑡 ) + 𝜌𝑡𝑐𝑡 − 𝐽𝑡+1

= (1 − 𝜌𝑡 ) (𝑐 (𝑡 ) − 𝐽𝑡 ) + 𝜌𝑡 (𝑐𝑡 − 𝐽𝑡 ) + (1 − 𝜌𝑡 ) (𝐽𝑡 − 𝐽𝑡+1). (106)

Taking absolute values and expectations yields

E[|𝑒𝑡+1 |] ≤ (1 − 𝜌𝑡 )E[|𝑒𝑡 |] + 𝜌𝑡E[|𝑐𝑡 − 𝐽𝑡 |] + (1 − 𝜌𝑡 )E[|𝐽𝑡+1 − 𝐽𝑡 |] . (107)

Since 0 ≤ 𝑐𝑡 ≤ 𝑐max, we have |𝑐𝑡 − 𝐽𝑡 | ≤ 𝑐max and thus

𝜌𝑡E[|𝑐𝑡 − 𝐽𝑡 |] ≤ 𝜌𝑡𝑐max ≤ 𝑐max𝜌max . (108)

Because the policy parameters move on the slow timescale 𝛼𝑡 and the policy-score is bounded

(Assumption 1), standard smoothness/perturbation arguments under uniform mixing imply that

𝐽 (𝑧 ) (𝜋 (𝑚)
𝜙
) is Lipschitz in 𝜙 over the (compact) parameter set used in the analysis, i.e., there exists

𝐿𝐽 < ∞ (depending only on (𝑐max,𝐶mix, 𝜌,𝐺𝜋 )) such that

|𝐽𝑡+1 − 𝐽𝑡 | ≤ 𝐿𝐽 ∥𝜙 (𝑡+1)
𝑚 − 𝜙 (𝑡 )𝑚 ∥. (109)

Moreover, the actor update magnitude is uniformly bounded: ∥𝜙 (𝑡+1)
𝑚 − 𝜙 (𝑡 )𝑚 ∥ ≤ 𝑂 (𝛼𝑡 ) (bounded

score and bounded advantage/TD signal under clipping/bounded costs). Therefore

E[|𝐽𝑡+1 − 𝐽𝑡 |] ≤ 𝑂 (𝛼𝑡 ). (110)

Plugging (108)–(110) into (107) gives, for all 𝑡 ∈ I𝑘 , we have
E[|𝑒𝑡+1 |] ≤ (1 − 𝜌𝑡 )E[|𝑒𝑡 |] +𝑂 (𝜌max) +𝑂 (𝛼𝑡 ). (111)

Iterating (111) over 𝑡 ≥ 𝜏𝑘−1 + 𝑏 and using 𝜌𝑡 ≤ 𝜌max yields

E[|𝑒𝑡 |] ≤ (1 − 𝜌max)𝑡−(𝜏𝑘−1+𝑏 )E[|𝑒𝜏𝑘−1+𝑏 |] +
𝑡−1∑︁

𝑢=𝜏𝑘−1+𝑏
(1 − 𝜌max)𝑡−1−𝑢 (𝑂 (𝜌max) +𝑂 (𝛼𝑢))

≤ 𝑂 (𝜌max) +𝑂
(

sup

𝑢∈I𝑘

𝛼𝑢

𝜌max

)
+ (1 − 𝜌max)𝑡−(𝜏𝑘−1+𝑏 )E[|𝑒𝜏𝑘−1+𝑏 |] . (112)

Finally, by the mixing/burn-in bound (104) applied to the cost (bounded by 𝑐max), the bias in

E[𝑒𝜏𝑘−1+𝑏] due to a non-stationary initial state contributes at most 𝑂 (𝐶mix𝜌
𝑏). Hence, uniformly

for 𝑡 ≥ 𝜏𝑘−1 + 𝑏,

E[|𝑐 (𝑡 ) − 𝐽𝑡 |] ≤ 𝑂 (𝜌max) +𝑂
(

sup

𝑢∈I𝑘

𝛼𝑢

𝜌max

)
+𝑂

(
𝐶mix𝜌

𝑏
)
. (113)

Since the baseline is updated on the fast timescale (in our algorithmic choices 𝜌𝑡 is of the same

order as 𝛽𝑡 ), we may replace 𝜌max by 𝛽max in the ratio term up to constants, yielding the lemma’s

stated 𝑂 (sup𝛼/𝛽) dependence.
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H.5 Step 2: tracking of the critic parameter𝑤 (𝑡 )

Define the critic error

Δ𝑡 ≜ 𝑤 (𝑡 ) −𝑤∗𝑡 . (114)

From (101)-(102), we can rewrite the TD recursion as

𝑤 (𝑡+1) =𝑤 (𝑡 ) − 𝛽𝑡
(
𝑐𝑡 − 𝑐 (𝑡 ) +𝜓 (𝑠𝑡+1)⊤𝑤 (𝑡 ) −𝜓 (𝑠𝑡 )⊤𝑤 (𝑡 )

)
𝜓 (𝑠𝑡 )

=𝑤 (𝑡 ) + 𝛽𝑡
(
(𝑐 (𝑡 ) − 𝑐𝑡 )𝜓 (𝑠𝑡 ) −𝜓 (𝑠𝑡 ) (𝜓 (𝑠𝑡 ) −𝜓 (𝑠𝑡+1))⊤𝑤 (𝑡 )

)
. (115)

Introduce the sample quantities

𝐴𝑡 ≜ 𝜓 (𝑠𝑡 ) (𝜓 (𝑠𝑡 ) −𝜓 (𝑠𝑡+1))⊤ and 𝑏𝑡 ≜ (𝑐 (𝑡 ) − 𝑐𝑡 )𝜓 (𝑠𝑡 ), (116)

so (115) is 𝑤 (𝑡+1) = 𝑤 (𝑡 ) + 𝛽𝑡
(
𝑏𝑡 −𝐴𝑡𝑤 (𝑡 )

)
. Subtract 𝑤∗𝑡+1

from both sides and add/subtract the

mean quantities 𝐴∗𝑡 , 𝑏
∗
𝑡 :

Δ𝑡+1 =𝑤
(𝑡+1) −𝑤∗𝑡+1

=𝑤 (𝑡 ) −𝑤∗𝑡 + 𝛽𝑡
(
𝑏𝑡 −𝐴𝑡𝑤 (𝑡 )

)
+ (𝑤∗𝑡 −𝑤∗𝑡+1

)

= Δ𝑡 + 𝛽𝑡
(
(𝑏𝑡 − 𝑏∗𝑡 ) − (𝐴𝑡 −𝐴∗𝑡 )𝑤 (𝑡 )

)
+ 𝛽𝑡

(
𝑏∗𝑡 −𝐴∗𝑡𝑤 (𝑡 )

)
+ (𝑤∗𝑡 −𝑤∗𝑡+1

)

= (𝐼 − 𝛽𝑡𝐴∗𝑡 )Δ𝑡 + 𝛽𝑡
(
(𝑏𝑡 − 𝑏∗𝑡 ) − (𝐴𝑡 −𝐴∗𝑡 )𝑤 (𝑡 )

)
︸                               ︷︷                               ︸

martingale + mixing bias

+𝛽𝑡 (𝑏∗𝑡 −𝐴∗𝑡𝑤∗𝑡 )︸         ︷︷         ︸
=0 by (98)

+(𝑤∗𝑡 −𝑤∗𝑡+1
)

= (𝐼 − 𝛽𝑡𝐴∗𝑡 )Δ𝑡 + 𝛽𝑡𝜉𝑡 + (𝑤∗𝑡 −𝑤∗𝑡+1
), (117)

where 𝜉𝑡 ≜ (𝑏𝑡 − 𝑏∗𝑡 ) − (𝐴𝑡 − 𝐴∗𝑡 )𝑤 (𝑡 ) . By (99), for 𝛽𝑡 ≤ 1/∥𝐴∗𝑡 ∥ (which holds for all sufficiently

large 𝑡 , we have the operator norm bound

∥𝐼 − 𝛽𝑡𝐴∗𝑡 ∥ ≤ 1 − 𝛽𝑡𝜆𝐴/2. (118)

First note ∥𝜓 (𝑠)∥ ≤ 1 and 0 ≤ 𝑐𝑡 ≤ 𝑐max imply ∥𝐴𝑡 ∥ ≤ 2 and ∥𝑏𝑡 ∥ ≤ |𝑐 (𝑡 ) − 𝑐𝑡 | ≤ |𝑐 (𝑡 ) | + 𝑐max. Under

boundedness and the fact that 𝑐 (𝑡 ) is a convex combination of bounded costs, we have |𝑐 (𝑡 ) | ≤ 𝑐max,

hence ∥𝑏𝑡 ∥ ≤ 2𝑐max. Similarly ∥𝑏∗𝑡 ∥ ≤ 2𝑐max and ∥𝐴∗𝑡 ∥ ≤ 2. Using these and ∥𝑤 (𝑡 ) ∥ ≤ ∥𝑤∗𝑡 ∥ + ∥Δ𝑡 ∥,

∥𝜉𝑡 ∥ ≤ ∥𝑏𝑡 − 𝑏∗𝑡 ∥ + ∥𝐴𝑡 −𝐴∗𝑡 ∥∥𝑤 (𝑡 ) ∥
≤ ∥𝑏𝑡 − 𝑏∗𝑡 ∥ + ∥𝐴𝑡 −𝐴∗𝑡 ∥

(
∥𝑤∗𝑡 ∥ + ∥Δ𝑡 ∥

)
. (119)

By the burn-in mixing bound (104) applied to the bounded functions defining 𝐴𝑡 and 𝑏𝑡 , for all

𝑡 ≥ 𝜏𝑘−1 + 𝑏,

E[∥𝐴𝑡 −𝐴∗𝑡 ∥] + E[∥𝑏∗𝑡 − (𝐽𝑡 − 𝑐𝑡 )𝜓 (𝑠𝑡 )∥] ≤ 𝑂 (𝐶mix𝜌
𝑏). (120)

Moreover,

𝑏𝑡 − (𝐽𝑡 − 𝑐𝑡 )𝜓 (𝑠𝑡 ) = (𝑐 (𝑡 ) − 𝐽𝑡 )𝜓 (𝑠𝑡 ), (121)

so ∥𝑏𝑡 − (𝐽𝑡 − 𝑐𝑡 )𝜓 (𝑠𝑡 )∥ ≤ |𝑐 (𝑡 ) − 𝐽𝑡 |. Combining with (113) yields

E[∥𝑏𝑡 − 𝑏∗𝑡 ∥] ≤ E[|𝑐 (𝑡 ) − 𝐽𝑡 |] +𝑂 (𝐶mix𝜌
𝑏) ≤ 𝑂 (𝜌max) +𝑂

(
sup

𝑢∈I𝑘

𝛼𝑢

𝛽𝑢

)
+𝑂 (𝐶mix𝜌

𝑏). (122)
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Substituting (120)-(122) into (119), and using that ∥𝑤∗𝑡 ∥ is uniformly bounded (a consequence of

∥(𝐴∗𝑡 )−1∥ ≤ 1/𝜆𝐴 and bounded ∥𝑏∗𝑡 ∥), we obtain

E[∥𝜉𝑡 ∥] ≤ 𝑂 (𝜌max) +𝑂
(

sup

𝑢∈I𝑘

𝛼𝑢

𝛽𝑢

)
+𝑂 (𝐶mix𝜌

𝑏) +𝑂
(
E[∥Δ𝑡 ∥] ·𝐶mix𝜌

𝑏
)
. (123)

The last term is higher order once 𝑏 = Θ(𝑡mix) is chosen so that 𝐶mix𝜌
𝑏
is a small constant; we

absorb it into constants in big-𝑂 . As in (109), uniform mixing plus bounded score functions imply

that (𝐴∗𝑡 , 𝑏∗𝑡 ) are Lipschitz in 𝜙𝑚 , and by the matrix inverse perturbation identity,

𝑤∗ (𝜙) = 𝐴∗ (𝜙)−1𝑏∗ (𝜙) ⇒ ∥𝑤∗ (𝜙) −𝑤∗ (𝜙 ′)∥ ≤ 𝐿𝑤 ∥𝜙 − 𝜙 ′∥ (124)

for some 𝐿𝑤 < ∞ depending only on (𝑐max, 𝜆𝐴,𝐶mix, 𝜌,𝐺𝜋 ). Thus
∥𝑤∗𝑡+1

−𝑤∗𝑡 ∥ ≤ 𝑂 (𝛼𝑡 ). (125)

Taking norms in (117), applying (118), and then taking expectations, for 𝑡 ≥ 𝜏𝑘−1 + 𝑏,
E[∥Δ𝑡+1∥] ≤ (1 − 𝛽𝑡𝜆𝐴/2) E[∥Δ𝑡 ∥] + 𝛽𝑡E[∥𝜉𝑡 ∥] + E[∥𝑤∗𝑡+1

−𝑤∗𝑡 ∥]

≤ (1 − 𝛽𝑡𝜆𝐴/2) E[∥Δ𝑡 ∥] + 𝛽𝑡

(
𝑂 (𝜌max) +𝑂

(
sup

𝑢∈I𝑘

𝛼𝑢

𝛽𝑢

)
+𝑂 (𝐶mix𝜌

𝑏)
)
+𝑂 (𝛼𝑡 ). (126)

Using again that 𝛼𝑡 ≤ 𝛽𝑡 · sup𝑢∈I𝑘 (𝛼𝑢/𝛽𝑢), we can rewrite (126) as

E[∥Δ𝑡+1∥] ≤ (1 − 𝛽𝑡𝜆𝐴/2) E[∥Δ𝑡 ∥] +𝑂 (𝛽𝑡𝜌max) +𝑂
(
𝛽𝑡 sup

𝑢∈I𝑘

𝛼𝑢

𝛽𝑢

)
+𝑂 (𝛽𝑡𝐶mix𝜌

𝑏). (127)

Let 𝛽max = sup𝑢∈I𝑘 𝛽𝑢 . A standard discrete Grönwall argument for sequences of the form 𝑥𝑡+1 ≤
(1 − 𝑐𝛽𝑡 )𝑥𝑡 + 𝛽𝑡𝑢 yields (uniformly over 𝑡 ≥ 𝜏𝑘−1 + 𝑏)

E[∥Δ𝑡 ∥] ≤ 𝑂 (𝛽max) +𝑂 (𝜌max) +𝑂
(

sup

𝑢∈I𝑘

𝛼𝑢

𝛽𝑢

)
+𝑂 (𝐶mix𝜌

𝑏) + exp
©­«−𝜆𝐴2

𝑡−1∑︁
𝑢=𝜏𝑘−1+𝑏

𝛽𝑢
ª®¬E[∥Δ𝜏𝑘−1+𝑏 ∥] .

(128)

Finally, as in Appendix H.4, the burn-in/mixing lemma implies that the initialization error at time

𝜏𝑘−1 + 𝑏 contributes at most an additional 𝑂 (𝐶mix𝜌
𝑏) bias term in expectation, which we absorb.

Dropping the exponentially decaying term completes the desired bound for the critic.

H.6 Choosing the burn-in length 𝑏 = Θ(𝑡mix)
Pick any constant 𝜀 ∈ (0, 1) and set

𝑏 ≜ min{𝑡 ≥ 1 : 𝐶mix𝜌
𝑡 ≤ 𝜀}. (129)

Then 𝑏 = Θ(𝑡mix (𝜀)) = Θ(𝑡mix) and the burn-in contribution becomes𝑂 (𝜀). Substituting this choice
into (113) and (128) yields the lemma statement:

E
[
|𝑐 (𝑚,𝑡 ) − 𝐽 (𝑧 ) (𝜋 (𝑚)

𝜙
(𝑡 )
𝑚

) |
]
≤ 𝑂 (𝜌max) +𝑂 (𝛽max) +𝑂

(
sup𝑢∈I𝑘

𝛼𝑢

𝛽𝑢

)
+𝑂

(
𝐶mix𝜌

𝑏
)
, (130)

E
[
∥𝑤 (𝑡 )𝑚 −𝑤∗,(𝑧,𝑚) (𝜙 (𝑡 )𝑚 )∥

]
≤ 𝑂 (𝛽max) +𝑂

(
sup𝑢∈I𝑘

𝛼𝑢

𝛽𝑢

)
+𝑂

(
𝐶mix𝜌

𝑏
)
, (131)

with constants depending only on (𝑐max, 𝜆min,𝐶mix, 𝜌) (and the implied uniform conditioning con-

stant 𝜆𝐴).

□
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I Proof of Lemma 3
Proof. We prove for a fixed-share gate under full-information losses ℓ𝑡 (𝑚) ∈ [0,𝐶]. We then

relate the bound to the post-projection distribution 𝑔𝑡 used for sampling.

I.1 Step 0: Setup and the switching-aware gate update
Let ℓ𝑡 ∈ [0,𝐶]𝑀 denote the loss vector at time 𝑡 . Consider the fixed-share update on the simplex

with parameters: learning rate 𝜂 > 0 and share parameter 𝛼 ∈ (0, 1). Initialize𝑤1 (𝑚) = 1/𝑀 for all

𝑚 ∈ [𝑀] and define 𝑝𝑡 (𝑚) ≜ 𝑤𝑡 (𝑚)/
∑𝑀
𝑗=1
𝑤𝑡 ( 𝑗). Given ℓ𝑡 , define the exponentiated update

𝑤̂𝑡+1 (𝑚) = 𝑝𝑡 (𝑚) exp (−𝜂ℓ𝑡 (𝑚)) and 𝑝𝑡+1 (𝑚) =
𝑤̂𝑡+1(𝑚)∑𝑀
𝑗=1
𝑤̂𝑡+1 ( 𝑗)

. (132)

The fixed-share (switching-aware) distribution is then

𝑝𝑡+1 (𝑚) = (1 − 𝛼)𝑝𝑡+1(𝑚) + 𝛼 ·
1

𝑀
for𝑚 ∈ [𝑀] . (133)

This is the classical fixed-share Hedge algorithm (Herbster–Warmuth), which competes with expert

sequences that switch a limited number of times.

For the present lemma, we first analyze the distribution generated by the switching-aware

update (133); denote it by 𝑔𝑡 (·) (to avoid overloading), and later relate it to 𝑔𝑡 (·).

I.2 Step 1: A standard upper bound on the log-partition potential
Define the log-partition (potential)

𝑊𝑡 ≜
𝑀∑︁
𝑚=1

𝑤𝑡 (𝑚) and Φ𝑡 ≜ log𝑊𝑡 . (134)

Using 𝑝𝑡 (𝑚) =𝑤𝑡 (𝑚)/𝑊𝑡 and the exponentiated update,

𝑊𝑡+1 =

𝑀∑︁
𝑚=1

𝑤𝑡+1(𝑚) =
𝑀∑︁
𝑚=1

((1 − 𝛼)𝑝𝑡+1(𝑚) + 𝛼/𝑀) ·𝑊𝑡+1 . (135)

It is standard to analyze the intermediate normalization after exponentiation:

𝑍𝑡 ≜
𝑀∑︁
𝑚=1

𝑝𝑡 (𝑚) exp(−𝜂ℓ𝑡 (𝑚)).

Then, log𝑍𝑡 is the one-step change of the potential for the pure Hedge update (before sharing). By

Hoeffding’s lemma (or the convexity of exp), since ℓ𝑡 (𝑚) ∈ [0,𝐶], we have

log𝑍𝑡 = logE𝑚∼𝑝𝑡 [exp(−𝜂ℓ𝑡 (𝑚))] ≤ −𝜂E𝑚∼𝑝𝑡 [ℓ𝑡 (𝑚)] +
𝜂2𝐶2

8

. (136)

Summing (136) over 𝑡 = 1, . . . ,𝑇 yields the usual Hedge upper bound:

𝑇∑︁
𝑡=1

E𝑚∼𝑝𝑡 [ℓ𝑡 (𝑚)] ≤
Φ1 − Φ(Hedge)

𝑇+1

𝜂
+ 𝜂𝐶

2

8

𝑇, (137)

where Φ
(Hedge)
𝑇+1

denotes the log-partition after 𝑇 pure-Hedge exponentiated steps. Fixed-share

differs only in that it mixes 𝑝𝑡+1 with the uniform distribution. The standard way to handle this is

to lower bound the total weight assigned to a comparator expert sequence under the fixed-share

dynamics, which we do next.
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I.3 Step 2: A lower bound on the weight of a comparator switching sequence
Let m1:𝑇 = (𝑚1, . . . ,𝑚𝑇 ) be any expert sequence with at most 𝑆 switches, i.e.,

𝑆 (m1:𝑇 ) ≜
𝑇∑︁
𝑡=2

1{𝑚𝑡 ≠𝑚𝑡−1} ≤ 𝑆. (138)

For fixed-share, one can interpret 𝑝𝑡 (·) as the marginal of a Markov prior over expert indices

with switch probability 𝛼 : stay with probability 1 − 𝛼 , switch uniformly to one of𝑀 experts with

probability 𝛼 . Under this interpretation, the (unnormalized) weight assigned tom1:𝑇 after observing

losses is proportional to

Pr(m1:𝑇 ) · exp

(
−𝜂

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑚𝑡 )
)
, (139)

where

Pr(m1:𝑇 ) =
1

𝑀
· (1 − 𝛼)𝑇−1−𝑆 (m1:𝑇 ) ·

( 𝛼
𝑀

)𝑆 (m1:𝑇 )
. (140)

Consequently, the total normalizer (the total weight summed over all sequences) is at least the

weight of the single sequence m1:𝑇 , i.e.,

𝑊
(FS)
𝑇+1
≥ 1

𝑀
· (1 − 𝛼)𝑇−1−𝑆 (m1:𝑇 ) ·

( 𝛼
𝑀

)𝑆 (m1:𝑇 )
· exp

(
−𝜂

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑚𝑡 )
)
, (141)

where𝑊
(FS)
𝑇+1

is the normalizer induced by the fixed-share recursion. Taking logs and using 𝑆 (m1:𝑇 ) ≤
𝑆 yields

log𝑊
(FS)
𝑇+1
≥ − log𝑀 − (𝑇 − 1 − 𝑆) log

1

1 − 𝛼 − 𝑆 log

𝑀

𝛼
− 𝜂

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑚𝑡 ). (142)

I.4 Step 3: Combine the upper and lower bounds to obtain switching regret
A standard fixed-share analysis (see Herbster–Warmuth) combines the one-step bound (136), which

upper bounds the evolution of the normalizer for exponentiated updates, and the lower bound (142),

which ensures the normalizer cannot be too small because it must include the comparator path.

Concretely, one obtains the following regret bound for the fixed-share prediction sequence 𝑔𝑡 (·)
generated by (133): for any comparator sequence m1:𝑇 with 𝑆 (m1:𝑇 ) ≤ 𝑆 ,

𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑚𝑡 ) ≤
log𝑀 + 𝑆 log

𝑀
𝛼
+ (𝑇 − 1 − 𝑆) log

1

1−𝛼
𝜂

+ 𝜂𝐶
2

8

𝑇 . (143)

Equation (143) is the standard fixed-share bound. Its proof is exactly the potential argument

summarized above, with the Markov-prior lower bound (141) playing the role of the “best expert”

lower bound in classical Hedge.

I.5 Step 4: Specialize to the piecewise-constant in-class selector
In Lemma 3, the comparator is the piecewise-constant in-class selector𝑚ic

𝑡 ≡𝑚ic

𝑘
for 𝑡 ∈ I𝑘 , which

switches exactly 𝑆𝑇 times: 𝑆 (mic

1:𝑇
) = 𝑆𝑇 . Applying (143) with 𝑆 = 𝑆𝑇 gives

𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑚ic

𝑡 ) ≤
log𝑀 + 𝑆𝑇 log

𝑀
𝛼
+ (𝑇 − 1 − 𝑆𝑇 ) log

1

1−𝛼
𝜂

+ 𝜂𝐶
2

8

𝑇 . (144)
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I.6 Step 5: Choose (𝛼, 𝜂) and simplify
A convenient choice is 𝛼 =

𝑆𝑇
𝑇−1

when 𝑆𝑇 ≥ 1 if 𝑆𝑇 = 0 take any small constant 𝛼 and the bound

reduces to the standard Hedge bound). With this choice,

(𝑇 − 1 − 𝑆𝑇 ) log

1

1 − 𝛼 = (𝑇 − 1 − 𝑆𝑇 ) log

𝑇 − 1

𝑇 − 1 − 𝑆𝑇
≤ 𝑆𝑇 , (145)

and

𝑆𝑇 log

𝑀

𝛼
= 𝑆𝑇 log

(𝑀 (𝑇 − 1)
𝑆𝑇

)
≤ 𝑆𝑇 log(𝑀𝑇 ). (146)

Thus, (144) becomes

𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑚ic

𝑡 ) ≤
log𝑀 + 𝑆𝑇 log(𝑀𝑇 ) + 𝑆𝑇

𝜂
+ 𝜂𝐶

2

8

𝑇 . (147)

Choose

𝜂 =

√︂
8 (log𝑀 + 𝑆𝑇 log(𝑀𝑇 ) + 𝑆𝑇 )

𝐶2𝑇
. (148)

Plugging into (147) yields

𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑚ic

𝑡 ) ≤ 𝑂
(
𝐶
√︁
𝑇 log𝑀 +𝐶𝑆𝑇 log(𝑀𝑇 )

)
. (149)

In the main text, it is common to suppress the additional log𝑇 factor with 𝑂̃ (·) notation, in which

case (149) is reported as 𝑂

(
𝐶
√︁
𝑇 log𝑀 +𝐶𝑆𝑇 log𝑀

)
.

I.7 Step 6: From 𝑔𝑡 to the post-projection sampling distribution 𝑔𝑡
In Algorithm 1, the distribution used to sample the expert is 𝑔𝑡 (·), obtained by projecting (or

modifying) 𝑔𝑡 (·) to enforce 𝑔𝑡 (𝑚safe) ≥ 𝑝min. For arbitrary loss vectors, projection can only change

the expected loss by at most 𝐶 times the total mass moved. In particular, for the common “raise

safe coordinate then renormalize” projection used in your paper, one can show for every 𝑡 ,

𝑀∑︁
𝑚=1

𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) ≤
𝑀∑︁
𝑚=1

𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) +𝐶𝑝min, (150)

because the projection increases the safe expert probability by at most 𝑝min (if 𝑔𝑡 (𝑚safe) < 𝑝min)

and the loss range is [0,𝐶]. Summing (150) over 𝑡 = 1, . . . ,𝑇 yields

𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑚ic

𝑡 ) ≤
(
𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑚ic

𝑡 )
)
+𝐶𝑝min𝑇 . (151)

Combining (151) with (149) yields the post-projection bound

𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑚ic

𝑡 ) ≤ 𝑂
(
𝐶
√︁
𝑇 log𝑀 +𝐶𝑆𝑇 log(𝑀𝑇 )

)
+𝐶𝑝min𝑇 . (152)
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I.8 Conclusion
Ignoring the stability floor (or using 𝑂̃ (·) notation to suppress log𝑇 ), the fixed-share gate satisfies

𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑚ic

𝑡 ) ≤ 𝑂
(
𝐶
√︁
𝑇 log𝑀 +𝐶 𝑆𝑇 log𝑀

)
, (153)

which is the claimed form in Lemma 3 (with the standard caveat discussed above regarding the

safety projection and the possible additional log𝑇 factor under explicit parameter choices).

□

J Proof of Lemma 4

Proof. Recall that the regret Reg(𝑇 ) =𝐶𝑇 (𝜋1:𝑇 ) −𝐶∗𝑇 , the cost𝐶𝑇 (𝜋1:𝑇 ) ≜ E
[ ∑𝑇

𝑡=1
𝑐 (𝑧𝑡 ) (𝑠𝑡 , 𝑎𝑡 )

]
,

and the cost𝐶∗
𝑇
≜ E

[ ∑𝑇
𝑡=1
𝑐 (𝑧𝑡 ) (𝑠∗𝑡 , 𝑎∗𝑡 )

]
, where 𝜋1:𝑇 is the (possibly history-dependent) algorithmic

policy sequence, and 𝜋∗𝑡 = 𝜋∗,(𝑧𝑡 ) is the regime-aware benchmark from (3).

J.1 Step 1: Insert the in-class regime-aware comparator
For each regime 𝑧, let the in-class best stationary policy (over the union of expert families) be

𝜋 ic,(𝑧 ) ∈ arg min𝜋∈∪𝑚∈ [𝑀 ]Π (𝑚) 𝐽
(𝑧 ) (𝜋) and 𝐽 ic (𝑧) ≜ min𝜋∈∪𝑚∈ [𝑀 ]Π (𝑚) 𝐽

(𝑧 ) (𝜋). Let 𝑚ic (𝑧) be any

expert index achieving 𝐽 ic (𝑧), and define the piecewise-constant selector𝑚ic

𝑡 ≡𝑚ic

𝑘
≜ 𝑚ic (𝑧𝑘 ) for

𝑡 ∈ I𝑘 .
Define the (idealized) in-class regime-aware policy sequence 𝜋 ic

𝑡 ≜ 𝜋 ic,(𝑧𝑡 )
and its finite-horizon

cost 𝐶 ic

𝑇
≜ E

[ ∑𝑇
𝑡=1
𝑐 (𝑧𝑡 ) (𝑠 ic

𝑡 , 𝑎
ic

𝑡 )
]
, where 𝑎ic

𝑡 ∼ 𝜋 ic,(𝑧𝑡 ) (· | 𝑠 ic

𝑡 ) and 𝑠 ic

𝑡+1
∼ 𝑃 (𝑧𝑡 ) (· | 𝑠 ic

𝑡 , 𝑎
ic

𝑡 ). Then, by
adding and subtracting 𝐶 ic

𝑇
, we have

Reg(𝑇 ) =
(
𝐶𝑇 (𝜋1:𝑇 ) −𝐶 ic

𝑇

)
︸               ︷︷               ︸

≜ Reg
alg→ic

(𝑇 )

+
(
𝐶 ic

𝑇 −𝐶
∗
𝑇

)
︸       ︷︷       ︸
≜ Reg

ic→∗ (𝑇 )

. (154)

J.2 Step 2: Bound the approximation gap Reg
ic→∗ (𝑇 )

By definition of Approx𝜋 in (24), we have

𝐽 ic (𝑧) − 𝐽 (𝑧 ) (𝜋∗,(𝑧 ) ) ≤ Approx𝜋 , for all 𝑧 ∈ Z. (155)

If each regime were held fixed forever and both chains were initialized in stationarity, then the

per-step gap between 𝜋 ic,(𝑧 )
and 𝜋∗,(𝑧 ) would be exactly 𝐽 ic (𝑧) − 𝐽 (𝑧 ) (𝜋∗,(𝑧 ) ) ≤ Approx𝜋 . Over a

finite horizon with switching, one must also account for the segment burn-in bias after each switch.

We isolate this bias as Reg
switch

(𝑇 ) (defined below).

Concretely, fix a burn-in length 𝑏 (e.g., 𝑏 = 𝑡mix (𝜖) from Definition 2) and decompose each

segment I𝑘 = {𝜏𝑘−1, . . . , 𝜏𝑘 − 1} into its burn-in part Iburn

𝑘
≜ {𝜏𝑘−1, . . . ,min{𝜏𝑘−1 + 𝑏 − 1, 𝜏𝑘 − 1}}

and its post-burn-in part Istat

𝑘
≜ I𝑘 \ Iburn

𝑘
. Using bounded costs (0 ≤ 𝑐 (𝑧 ) ≤ 𝑐max), we can always

upper bound the burn-in contribution by 𝑐max per step and write

Reg
switch

(𝑇 ) ≜ 𝑐max

𝑆𝑇 +1∑︁
𝑘=1

|Iburn

𝑘
| ≤ 𝑐max (𝑆𝑇 + 1)𝑏. (156)

Then, on the post-burn-in portions Istat

𝑘
, Lemma 1 justifies replacing time averages by steady-state

averages up to an 𝑂 (𝜖) bias; absorbing these 𝑂 (𝜖𝑇 ) terms into (156) (by choosing 𝜖 as a fixed
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constant) yields

Reg
ic→∗ (𝑇 ) =𝐶 ic

𝑇 −𝐶
∗
𝑇 ≤ 𝑇 · Approx𝜋 + Reg

switch
(𝑇 ). (157)

J.3 Step 3: Decompose Reg
alg→ic

(𝑇 ) into gate-selection and within-expert learning
At each time 𝑡 , Algorithm 1 produces (after safety projection) a sampling distribution 𝑔𝑡 (· | 𝑠𝑡 ) over
experts, samples𝑚𝑡 ∼ 𝑔𝑡 (· | 𝑠𝑡 ), then samples 𝑎𝑡 ∼ 𝜋 (𝑚𝑡 )

𝜙
(𝑡 )
𝑚𝑡

(· | 𝑠𝑡 ). Define the conditional expected
one-step cost if expert𝑚 were used at time 𝑡 (given the realized 𝑠𝑡 and the current parameters):

𝑐𝑡 (𝑚) ≜ E
[
𝑐 (𝑧𝑡 ) (𝑠𝑡 , 𝑎)

����𝑠𝑡 , 𝑧𝑡 , 𝑎 ∼ 𝜋 (𝑚)𝜙
(𝑡 )
𝑚

(· | 𝑠𝑡 )
]
. (158)

Then, the algorithm’s conditional expected one-step cost equals

∑
𝑚 𝑔𝑡 (𝑚 | 𝑠𝑡 )𝑐𝑡 (𝑚), so

Reg
alg→ic

(𝑇 ) =
𝑇∑︁
𝑡=1

E
[∑︁
𝑚

𝑔𝑡 (𝑚 | 𝑠𝑡 )𝑐𝑡 (𝑚)
]
−

𝑇∑︁
𝑡=1

E
[
𝑐𝑡 (𝑚ic

𝑡 )
]

(159)

+
𝑇∑︁
𝑡=1

E
[
𝑐𝑡 (𝑚ic

𝑡 )
]
−

𝑇∑︁
𝑡=1

E
[
𝑐 (𝑧𝑡 ) (𝑠 ic

𝑡 , 𝑎
ic

𝑡 )
]

︸                                           ︷︷                                           ︸
≜ Reg

AC
(𝑇 )

. (160)

The last bracket is exactly a within-expert learning/modeling term. It measures how far the cur-

rent parameterized policy 𝜋
(𝑚ic

𝑡 )
𝜙
(𝑡 )
𝑚ic

𝑡

(and its induced trajectory) is from the ideal in-class stationary

comparator 𝜋 ic,(𝑧𝑡 )
. This is the term denoted Reg

AC
(𝑇 ) in the lemma statement. It is controlled

by Lemma 2 and standard average-cost policy-gradient arguments.

It remains to upper bound the first difference in (159), which is purely an expert-selection error:

𝑇∑︁
𝑡=1

E
[∑︁
𝑚

𝑔𝑡 (𝑚 | 𝑠𝑡 )𝑐𝑡 (𝑚) − 𝑐𝑡 (𝑚ic

𝑡 )
]
. (161)

J.4 Step 4: Relate expert-selection cost to the gate surrogate loss
By construction of the gate, we assume a calibration (or domination) relationship between instanta-

neous selection suboptimality and the surrogate gate loss ℓ𝑡 (𝑚) ∈ [0,𝐶]. Specifically, assume there

exists 𝜅1 ≥ 1 and an additive bias Approx𝑉 ≥ 0 such that for all 𝑡 and all distributions 𝑞 ∈ Δ𝑀 ,

E
[∑︁
𝑚

𝑞(𝑚)𝑐𝑡 (𝑚) − 𝑐𝑡 (𝑚ic

𝑡 )
]
≤ 𝜅1E

[∑︁
𝑚

𝑞(𝑚)ℓ𝑡 (𝑚) − ℓ𝑡 (𝑚ic

𝑡 )
]
+ Approx𝑉 . (162)

Heuristically, Approx𝑉 captures the fact that TD-residual losses are computed using approximate

differential values, so the surrogate need not be perfectly aligned with true cost. In realizable

settings, Approx𝑉 can be taken as 0. Apply (162) with 𝑞 = 𝑔𝑡 (· | 𝑠𝑡 ) and sum over 𝑡 :

𝑇∑︁
𝑡=1

E
[∑︁
𝑚

𝑔𝑡 (𝑚 | 𝑠𝑡 )𝑐𝑡 (𝑚) − 𝑐𝑡 (𝑚ic

𝑡 )
]

≤ 𝜅1

(
𝑇∑︁
𝑡=1

E
[∑︁
𝑚

𝑔𝑡 (𝑚 | 𝑠𝑡 )ℓ𝑡 (𝑚)
]
−

𝑇∑︁
𝑡=1

E[ℓ𝑡 (𝑚ic

𝑡 )]
)
+𝑇 · Approx𝑉

= 𝜅1Reg
gate
(𝑇 ) +𝑇 · Approx𝑉 , (163)
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where Reg
gate
(𝑇 ) is exactly as defined in the lemma statement (note ℓ𝑡 (𝑚ic

𝑡 ) is deterministic given

the losses).

Combining (163) with (159) yields

Reg
alg→ic

(𝑇 ) ≤ 𝜅1 Reg
gate
(𝑇 ) + Reg

AC
(𝑇 ) +𝑇 · Approx𝑉 . (164)

J.5 Step 5: Combine the pieces
Plugging (157) and (164) into (154) gives

Reg(𝑇 ) ≤ 𝜅1Reg
gate
(𝑇 ) + Reg

AC
(𝑇 ) + Reg

switch
(𝑇 ) +𝑇 · Approx𝜋 +𝑇 · Approx𝑉 , (165)

which is exactly (32).

□

K Proof of Theorem 5
Proof. We prove (34) by combining the three structural lemmas proved in the appendix: (i)

the gate regret bound (Lemma 3), (ii) the critic/baseline tracking bound within a regime segment

(Lemma 2), and (iii) the regret decomposition (Lemma 4). We also bound the switching transient

term Reg
switch

(𝑇 ) using the per-regime mixing property (Definition 2).

K.1 Step 1: Decomposition
By Lemma 4, under bounded costs and the calibration relation defining 𝜅1,

Reg(𝑇 ) ≤ 𝜅1Reg
gate
(𝑇 ) + Reg

AC
(𝑇 ) + Reg

switch
(𝑇 ) +𝑇 · Approx𝜋 +𝑇 · Approx𝑉 . (166)

We now bound the three regret components Reg
gate
(𝑇 ), Reg

AC
(𝑇 ), and Reg

switch
(𝑇 ).

K.2 Step 2: Gate regret term
In the full-information variant, the gate observes bounded losses ℓ𝑡 (𝑚) ∈ [0,𝐶] for all𝑚. Apply-

ing Lemma 3 yields

Reg
gate
(𝑇 ) =

𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑔𝑡 (𝑚)ℓ𝑡 (𝑚) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑚ic

𝑡 ) ≤ 𝑐0

(
𝐶
√︁
𝑇 log𝑀 +𝐶𝑆𝑇 log𝑀

)
, (167)

for some absolute constant 𝑐0 > 0 (e.g., 𝑐0 = 𝑂 (1) depending on the exact fixed-share/Hedge

variant). Multiplying by 𝜅1 gives

𝜅1Reg
gate
(𝑇 ) ≤ 𝑂

(
𝜅1𝐶

√︁
𝑇 log𝑀 + 𝜅1𝐶𝑆𝑇 log𝑀

)
. (168)

K.3 Step 3: Switching transient term
We upper bound the transient cost incurred immediately after each regime switch, before the state

distribution re-mixes within the new regime and the critic/baseline recenters.

Fix a constant accuracy level 𝜖 ∈ (0, 1/4] and let 𝑏 ≜ 𝑡mix (𝜖) be the corresponding uniform

mixing time (from Definition 2 plus the definition of 𝑡mix (𝜖)). Partition time into the 𝑆𝑇 +1 segments

{I𝑘 }𝑆𝑇 +1

𝑘=1
with switch times {𝜏𝑘 }. For each segment 𝑘 , define its first 𝑏 steps as the “burn-in” subset

Iburn

𝑘
≜ {𝜏𝑘−1, 𝜏𝑘−1 + 1, . . . ,min{𝜏𝑘−1 + 𝑏 − 1, 𝜏𝑘 − 1}}. (169)
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By bounded costs (0 ≤ 𝑐 (𝑧 ) ≤ 𝑐max), the maximal per-step contribution to regret in these burn-in

steps is at most 𝑐max. Therefore, the total burn-in contribution across all segments is bounded by

Reg
switch

(𝑇 ) ≤ 𝑐max

𝑆𝑇 +1∑︁
𝑘=1

|Iburn

𝑘
| ≤ 𝑐max (𝑆𝑇 + 1) 𝑏 =𝑂

(
𝑐max𝑆𝑇 𝑡mix (𝜖)

)
, (170)

where we used 𝑏 = 𝑡mix (𝜖) and absorbed the additive (+1) into the big-𝑂 . Taking 𝜖 as a fixed

constant (e.g., 𝜖 = 1/4) yields the stated scaling

Reg
switch

(𝑇 ) ≤ 𝑂
(
𝑐max𝑆𝑇 𝑡mix

)
, (171)

where 𝑡mix is shorthand for 𝑡mix (1/4).

K.4 Step 4: Within-expert learning term Reg
AC
(𝑇 )

By definition in Lemma 4, Reg
AC
(𝑇 ) collects the loss due to imperfect advantage surrogates and

slow actor updates. We bound it by a standard “stochastic approximation under Markov noise”

argument, using Lemma 2 to control the bias of the TD residual 𝛿
(𝑚)
𝑡 (as an advantage surrogate)

within each stationary regime segment.

Fix a segment I𝑘 with regime 𝑧𝑘 , and consider the in-class comparator expert 𝑚ic

𝑘
on this

segment. Let 𝑚 ≜ 𝑚ic

𝑘
for brevity. For the average-cost actor-critic update in Algorithm 1, the

actor update for expert𝑚 uses the score ∇𝜙𝑚 log𝜋
(𝑚)
𝜙𝑚
(𝑎𝑡 | 𝑠𝑡 ) multiplied by the TD residual 𝛿

(𝑚)
𝑡 .

Under Assumption 1, we have a uniform score bound

∇𝜙𝑚 log𝜋
(𝑚)
𝜙𝑚
(𝑎 | 𝑠)



 ≤ 𝐺𝜋 . (172)

Moreover, under Assumption 2 and Lemma 2, after burn-in 𝑏 = Θ(𝑡mix) within the segment, the

critic/baseline tracking errors satisfy, for all 𝑡 ∈ I𝑘 with 𝑡 ≥ 𝜏𝑘−1 + 𝑏,

E
[
|𝑐 (𝑚,𝑡 ) − 𝐽 (𝑧𝑘 ) (𝜋 (𝑚)

𝜙
(𝑡 )
𝑚

) |
]
≤ 𝜉𝑐,𝑘 , (173)

E
[
∥𝑤 (𝑡 )𝑚 −𝑤∗,(𝑧𝑘 ,𝑚) (𝜙 (𝑡 )𝑚 )∥

]
≤ 𝜉𝑤,𝑘 , (174)

where (matching Lemma 2) one can take

𝜉𝑐,𝑘 =𝑂 (𝜌max) +𝑂 (𝛽max) +𝑂
(

sup

𝑢∈I𝑘

𝛼𝑢

𝛽𝑢

)
+𝑂 (𝐶mix𝜌

𝑏), (175)

𝜉𝑤,𝑘 =𝑂 (𝛽max) +𝑂
(

sup

𝑢∈I𝑘

𝛼𝑢

𝛽𝑢

)
+𝑂 (𝐶mix𝜌

𝑏). (176)

These tracking errors imply that the TD residual 𝛿
(𝑚)
𝑡 is an approximately centered advantage

surrogate within the segment. Its conditional expectation differs from the ideal average-cost

advantage by at most a bias proportional to 𝜉𝑐,𝑘 + 𝜉𝑤,𝑘 . Because the actor update is scaled by step

size 𝛼𝑡 , the cumulative performance loss contributed by this bias over the segment is bounded by∑︁
𝑡 ∈I𝑘 :𝑡≥𝜏𝑘−1+𝑏

𝛼𝑡E
[��
(bias in 𝛿

(𝑚)
𝑡 )

�� · 

∇𝜙𝑚 log𝜋
(𝑚)
𝜙𝑚
(𝑎𝑡 | 𝑠𝑡 )



] ≤ 𝐺𝜋 (𝜉𝑐,𝑘 + 𝜉𝑤,𝑘 )∑︁
𝑡 ∈I𝑘

𝛼𝑡 . (177)

In addition, the martingale (noise) part of the actor update contributes the usual

∑
𝑡 𝛼

2

𝑡 term.

Concretely, because |𝛿 (𝑚)𝑡 | ≤ 𝑂 (𝑐max) +𝑂 (∥𝑤𝑚 ∥) and the score is bounded by 𝐺𝜋 , one obtains∑︁
𝑡 ∈I𝑘

𝛼2

𝑡 E
[
∥𝛿 (𝑚)𝑡 ∇𝜙𝑚 log𝜋

(𝑚)
𝜙𝑚
(𝑎𝑡 | 𝑠𝑡 )∥2

]
≤ 𝑐1

∑︁
𝑡 ∈I𝑘

𝛼2

𝑡 (178)
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for some finite 𝑐1 depending only on (𝑐max,𝐺𝜋 ) and the projection radius for (𝑤𝑚). Summing (177)

and (178) over all segments and using

∑
𝑘

∑
𝑡 ∈I𝑘 𝛼𝑡 =

∑𝑇
𝑡=1

𝛼𝑡 and
∑
𝑘

∑
𝑡 ∈I𝑘 𝛼

2

𝑡 =
∑𝑇
𝑡=1

𝛼2

𝑡 yields

Reg
AC
(𝑇 ) ≤ 𝑐2

𝑇∑︁
𝑡=1

𝛼𝑡 + 𝑐3

𝑇∑︁
𝑡=1

𝛼2

𝑡 + 𝑐4

𝑆𝑇 +1∑︁
𝑘=1

(𝜉𝑐,𝑘 + 𝜉𝑤,𝑘 )
∑︁
𝑡 ∈I𝑘

𝛼𝑡 , (179)

for constants 𝑐2, 𝑐3, 𝑐4 depending only on boundedness parameters.

Finally, choose standard diminishing step sizes 𝛼𝑡 = 𝛼/
√
𝑡 :

𝑇∑︁
𝑡=1

𝛼𝑡 =𝑂 (
√
𝑇 ) and

𝑇∑︁
𝑡=1

𝛼2

𝑡 =𝑂 (log𝑇 ), (180)

and under two-timescale separation (sup𝑢∈I𝑘 𝛼𝑢/𝛽𝑢 → 0 and 𝛽max, 𝜌max → 0), the tracking-error

factors 𝜉𝑐,𝑘 , 𝜉𝑤,𝑘 are 𝑜 (1) (or can be treated as constants absorbed into 𝑂̃ (·) at finite 𝑇 ). There-
fore, (179) gives the claimed sublinear rate

Reg
AC
(𝑇 ) ≤ 𝑂̃ (

√
𝑇 ), (181)

where 𝑂̃ (·) hides logarithmic factors (from

∑
𝑡 𝛼

2

𝑡 ) and the constant tracking-error terms fromLemma 2.

This matches the 𝑂̃ (
√
𝑇 ) term in (34).

K.5 Step 5: Combine all bounds
Substitute (168), (171), and (181) into (166):

Reg(𝑇 ) ≤ 𝑂
(
𝜅1𝐶

√︁
𝑇 log𝑀 + 𝜅1𝐶𝑆𝑇 log𝑀

)
+ 𝑂̃ (
√
𝑇 ) +𝑂

(
𝑐max𝑆𝑇 𝑡mix

)
+𝑇 (Approx𝜋 + Approx𝑉 ),

(182)

which is exactly (34).

K.6 Vanishing average regret
Divide both sides by 𝑇 . If 𝑆𝑇 = 𝑜 (𝑇 ) and Approx𝜋 + Approx𝑉 = 𝑜 (1), then each term on the right

divided by 𝑇 converges to 0:√︁
𝑇 log𝑀

𝑇
→ 0,

𝑆𝑇 log𝑀

𝑇
→ 0,

𝑂̃ (
√
𝑇 )

𝑇
→ 0,

𝑆𝑇 𝑡mix

𝑇
→ 0, (183)

hence Reg(𝑇 )/𝑇 → 0. This completes the proof.

□

L Proof of Theorem 6
Proof. We use a standard Foster-Lyapunov drift argument.

L.1 Step 1: Drift inequality ensured by the safety projection
By construction of the safety projection in Algorithm 1, the post-projection sampling distribution

satisfies

𝑔𝑡 (𝑚safe) ≥ 𝑝min > 0, for all 𝑡 . (184)

For the queueing instantiations (and more generally, whenever a stabilizing baseline policy exists),

we assume the following baseline drift property: there exist constants 𝐵 < ∞ and 𝜖 > 0 such that, if
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the stabilizing expert𝑚safe is selected with probability at least 𝑝min at every time, then the induced

queueing process satisfies the one-step conditional Lyapunov drift bound

E [𝐿(𝑄𝑡+1) − 𝐿(𝑄𝑡 ) | 𝑄𝑡 ] ≤ 𝐵 − 𝜖 ∥𝑄𝑡 ∥1, for all 𝑡, (185)

with 𝐿(𝑄) ≜ 1

2
∥𝑄 ∥2

2
. Thus, under the stated condition 𝑔𝑡 (𝑚safe) ≥ 𝑝min, inequality (185) holds.

L.2 Step 2: Unconditional drift and telescoping
Taking total expectation of (185) and using the tower property yields, for every 𝑡 ,

E [𝐿(𝑄𝑡+1)] − E [𝐿(𝑄𝑡 )] = E [E [𝐿(𝑄𝑡+1) − 𝐿(𝑄𝑡 ) | 𝑄𝑡 ]] (186)

≤ 𝐵 − 𝜖E [∥𝑄𝑡 ∥1] .
Summing (186) over 𝑡 = 1, 2, . . . ,𝑇 gives a telescoping sum:

E [𝐿(𝑄𝑇+1)] − E [𝐿(𝑄1)] ≤ 𝐵𝑇 − 𝜖
𝑇∑︁
𝑡=1

E [∥𝑄𝑡 ∥1] . (187)

Since 𝐿(·) ≥ 0, we have E[𝐿(𝑄𝑇+1)] ≥ 0, and therefore

𝜖

𝑇∑︁
𝑡=1

E [∥𝑄𝑡 ∥1] ≤ 𝐵𝑇 + E [𝐿(𝑄1)] . (188)

Divide both sides by 𝑇𝜖 :

1

𝑇

𝑇∑︁
𝑡=1

E [∥𝑄𝑡 ∥1] ≤
𝐵

𝜖
+ E[𝐿(𝑄1)]

𝜖𝑇
. (189)

Taking lim sup𝑇→∞ on both sides and using
E[𝐿 (𝑄1 ) ]

𝜖𝑇
→ 0 yields

lim sup

𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

E [∥𝑄𝑡 ∥1] ≤
𝐵

𝜖
. (190)

This is exactly the desired bound.

L.3 Step 3: Strong stability
Under the standard definition of strong stability (finite time-average expected backlog),

lim sup

𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

E [∥𝑄𝑡 ∥1] < ∞, (191)

the bound above implies that the queue component {𝑄𝑡 } is strongly stable.

This completes the proof.

□
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